New insights into the molecular regulation of mechanotransduction
力转导分子调控的新见解
基本信息
- 批准号:10472251
- 负责人:
- 金额:$ 143.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAdultAsthmaBindingBiochemicalBiological AssayCardiovascular DiseasesCell membraneCellsCharacteristicsChemicalsComplexConflict (Psychology)CytoskeletonDiseaseEnvironmentExtracellular MatrixFocal AdhesionsGrowthHeart failureHumanIn VitroIntegrinsLipid BilayersLiquid substanceMalignant NeoplasmsModelingMolecularMorphogenesisOsteoporosisPathway interactionsPhasePhysiologyProcessProteinsRegulationSignal PathwaySignal TransductionTestingTissuesWorkbasecell motilityexperimental studyextracellularhuman diseaseinsightlensmechanical signalmechanotransductionnovelreceptorreconstitutiontool
项目摘要
Project summary
Cells exist in a physical world, and there is often a physical basis for human function and disease.
Mechanotransduction is the molecular process by which cells sense and respond to mechanical signals in their
environment. Abnormal mechanotransduction can contribute to many human diseases including asthma, heart
failure, osteoporosis, and cancer. Thus, it is crucial to understand the molecular basis of mechanotransduction
and how these signaling pathways are disrupted during disease. Integrin receptors are critical regulators of
mechanotransduction at the plasma membrane that signal through the assembly supramolecular complexes
termed “focal adhesions.” Focal adhesions physically connect the actin cytoskeleton to the extracellular
environment, and forces generated in the actin cytoskeleton are transmitted across focal adhesions to drive
tissue morphogenesis, cell movement, and extracellular matrix remodeling. Although the proper regulation of
focal adhesions is essential for integrin-dependent mechanotransduction, important questions about their
formation and function remain unanswered. We do not understand how focal adhesions form, how they grow, or
how their molecular composition is regulated. Cell-based experiments have led to conflicting observations, and
we have limited tools to understand how changing molecular composition can create focal adhesions with
specific chemical or physical characteristics that alter downstream signaling.
To address these important questions, Dr. Case has developed a novel biochemical reconstitution of
focal adhesions using purified proteins on supported lipid bilayers. This work identified seven proteins that are
sufficient to form focal adhesions through liquid-liquid phase separation. Studying integrin-dependent
mechanotransduction through the lens of phase separation could drive significant advances in the field. The
Case Lab will use a variety of experimental strategies to understand different aspects of integrin-dependent
mechanotransduction. They will directly test different models of mechanotransduction with biochemical
reconstitution and confirm the importance of any new in vitro observations with cell-based assays. They will
investigate how focal adhesions mature, how forces are transmitted across focal adhesions, and how the
biochemical composition of focal adhesions is regulated. This project will take advantage of a novel experimental
approach to challenge the current dogma about integrin-dependent mechanotransduction, and will reveal how
specific molecules regulate focal adhesion growth and composition.
项目摘要
细胞存在于物理世界中,并且通常存在人类功能和疾病的物理基础。
机械转导是分子过程,细胞在其中感知并响应其机械信号
环境。异常机械转传会导致许多人类疾病,包括哮喘,心脏
失败,骨质疏松和癌症。这一点至关重要的是要了解机械转导的分子基础
以及这些信号通路如何破坏疾病。整联蛋白受体是关键的调节剂
质膜上的机械转导,该质膜通过装配超分子复合物发出信号
称为“焦点粘合剂”。焦点粘合剂实际将肌动蛋白细胞骨架与细胞外连接
环境和肌动蛋白细胞骨架中产生的力跨焦点粘合剂传播以驱动
组织形态发生,细胞运动和细胞外基质重塑。虽然适当的法规
焦点广告对于依赖整联蛋白的机械传输至关重要,有关其的重要问题
形成和功能仍未得到解答。我们不了解焦点广告的形式,它们的成长方式或
如何调节它们的分子组成。基于细胞的实验导致了相互冲突的观察结果,并且
我们有有限的工具来了解变化的分子组成如何与
特定的化学或物理特性改变了下游信号传导。
为了解决这些重要问题,凯斯博士开发了一种新颖的生化重构
使用纯化的蛋白质在受支持的脂质双层的焦点广告。这项工作确定了七个蛋白质
足以通过液态液相分离形成焦点粘合剂。研究整联蛋白依赖性
通过相位分离镜头的机械转导可能会带来该田间的重大进展。这
案例实验室将使用各种实验策略来了解整合素的不同方面
机械转导。他们将直接通过生化测试不同的机械转移模型
重建并确认对基于细胞测定的任何新体外观察的重要性。他们会的
研究焦点粘合剂如何成熟,如何在焦点粘合剂之间传播力以及如何
调节焦点粘合剂的生化组成。该项目将利用一个新颖的实验
挑战当前关于整联蛋白依赖性机械转导的教条的方法,并将揭示如何
特定的分子调节局灶性粘合剂的生长和组成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsay Case其他文献
Lindsay Case的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
EGF Receptor Endocytosis: Mechanisms and Role in Signaling
EGF 受体内吞作用:机制及其在信号传导中的作用
- 批准号:
10552100 - 财政年份:2023
- 资助金额:
$ 143.1万 - 项目类别:
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 143.1万 - 项目类别:
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
- 批准号:
10815443 - 财政年份:2023
- 资助金额:
$ 143.1万 - 项目类别:
ArpC3-mediated actin remodeling in insulin granule exocytosis and diabetes
ArpC3 介导的肌动蛋白重塑在胰岛素颗粒胞吐作用和糖尿病中的作用
- 批准号:
10583734 - 财政年份:2023
- 资助金额:
$ 143.1万 - 项目类别:
Hypertrophic adipocytes as biophysical mediators of breast cancer progression
肥大脂肪细胞作为乳腺癌进展的生物物理介质
- 批准号:
10751284 - 财政年份:2023
- 资助金额:
$ 143.1万 - 项目类别: