Deep Mutational Scanning and Functional Analysis of Repolarization Determinants
复极化决定因素的深度突变扫描和功能分析
基本信息
- 批准号:10467096
- 负责人:
- 金额:$ 40.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressArrhythmiaBiological AssayCandidate Disease GeneCardiacCardiac MyocytesCatalogsCessation of lifeClassificationClassification SchemeClinicalClinical DataCodeComputer AnalysisComputer ModelsCorrelative StudyCoupledDataData SetDatabasesDecision MakingDiseaseFrequenciesGenesGeneticGenomicsGenotypeHeartHeart AbnormalitiesIndividualIon ChannelKnowledgeLinkLong QT SyndromeMembraneMethodologyMethodsModelingMolecular ComputationsNucleic Acid Regulatory SequencesOther GeneticsOutcome StudyPathogenicityPhenotypePhysiologicalPlayPotassium ChannelProteinsReportingReproducibilityResearchResourcesRestRiskRoleRunningSpeedStructureSudden DeathSyndromeTechniquesTimeTrans-Omics for Precision MedicineVariantWorkbasebiobankbioinformatics toolclinical careclinical phenotypecostexomefitnessfunctional genomicsgenetic testinggenetic variantgenome wide association studygenomic datainduced pluripotent stem cellinnovationinsightinterdisciplinary approachloss of functionmolecular dynamicsmolecular modelingmortality riskmultiplex assaymutation screeningnovelphenomicspredictive modelingscreeningsexsudden cardiac deathvariant of unknown significance
项目摘要
PROJECT SUMMARY/ABSTRACT
The underpinnings of sudden cardiac death are related to genetic and acquired ion channel abnormalities and
many are related to potassium channel variants. Gains in phenotype-genotype correlative studies have
revolutionized our understanding of a range of sudden arrhythmic death syndromes, yet currently, identification
of coding variants has far outpaced our ability to correctly classify the variant, and for most genes there are more
unclassified variants (variants of unknown significance, VUS) than classified. This creates barriers for clinical
care, familial cascade screening and, moreover, a functional link to disease. The importance of physiologic and
functional analysis for variant classification has been emphasized, yet contemporary methods are cumbersome
(time and resources) decreasing efficiency in unraveling the arrhythmic risk associated with genetic variants.
Our lab’s work focuses on functional genomics of abnormal cardiac repolarization and cardiac arrhythmic sudden
death syndromes, and we have developed high volume assays to understand variant pathogenicity. Yet most
variant characterization proceeds in a reactive manner (clinical variant identification followed by functional study)
and clinical association is often lacking (siloed research); this creates gaps in optimal and efficient variant
classification. We aim to address these major gaps in knowledge by creating a pro-active, data driven and
mechanistic variant classification scheme cross-validated with clinical data. In Aim 1, Deep Mutational Scanning
(DMS) of Kir2.1, a K+ channel essential for repolarization, and MAVE (multiplexed assay of variant effects)
creation will unveil functional annotation of all possible variants simultaneously to create a comprehensive fitness
landscape. In Aim 2 MAVE will be applied to all K+ channel variants identified from TOPMed and the UK Biobank
that have effects on repolarization to triangularly validate phenomic-genomic-functional data for genetic variant
classification. Lastly, in Aim 3 we integrate genetic variant and MAVE results with traditional cellular markers of
abnormal repolarization using an iPS-cardiomyocyte model and molecular computational modeling. Our central
hypothesis is that DMS will uncover loss of function variants in regulatory regions of Kir2.1, MAVE of low
frequency K+ channel coding variants from the TOPMed and UK Biobank will reveal common thematic and
mechanistic readouts, and these can be validated in iPS-CMs and computational molecular modeling. The
outcomes of this study will allow the field of functional genomics to begin to keep pace with rapidly evolving
genetic discovery through high integrity, high throughput, and highly reproducible and unbiased techniques. We
will create a methodologic template to catalog all other high-impact repolarization associated variants as a vital
step to transition from reactive to proactive classification. Moreover, we will help establish the methodology to
correlate clinical findings with variant characterization using parallel mechanistic techniques. This is an
innovative proactive, data-driven approach, usable by clinicians and research teams alike to determine
actionability of a given variant and to inform predictive models to reveal new structural-functional insights.
项目摘要/摘要
猝死的基础与遗传和获得的离子通道异常有关,
许多与钾通道变体有关。表型基因型相关研究的收益已有
彻底改变了我们对一系列突然心律不齐综合症的理解,但目前是识别
编码变体已经超过了我们正确分类变体的能力,对于大多数基因而言,还有更多
未分类的变体(未知意义的变体,VUS)比分类。这为临床造成了障碍
护理,家族性级联筛查以及与疾病的功能联系。生理学和
已经强调了变体分类的功能分析,但现代方法很麻烦
(时间和资源)降低与遗传变异相关的心律失常风险的效率。
我们的实验室工作着重于异常心脏重复和心律失常突然的功能基因组学
死亡综合症,我们已经开发了大量测定,以了解变异的致病性。最多
变体表征以反应性方式进行(临床变异鉴定,然后进行功能研究)
临床关联通常缺乏(孤立的研究);这会在最佳有效的变体中造成差距
分类。我们旨在通过创建积极主动的数据驱动和
机械变体分类方案与临床数据交叉验证。在AIM 1中,深度突变扫描
Kir2.1的(DMS),一种重脱极化必不可少的K+通道和MAVE(变异效应的多重测定)
创建将揭示所有可能变体的功能注释,只是为了创建全面的健身
景观。在AIM 2中,Mave将应用于TopMed和UK Biobank的所有K+通道变体
对复制作用的影响,以验证遗传变异的现象基因组功能数据
分类。最后,在AIM 3中,我们将遗传变异和MAVE结果与传统的蜂窝标记集成在一起
使用IPS-毛肌细胞模型和分子计算建模的异常复极。我们的中心
假设是,DMS将发现Kir2.1调节区域的功能变异损失,低的MAVE
来自顶部和英国生物库的频率K+通道编码变体将揭示常见的主题和
机械读数,可以在IPS-CMS和计算分子建模中进行验证。这
这项研究的结果将使功能基因组学领域能够随着快速发展而开始步伐
通过高完整性,高吞吐量和高度可重现和无偏见的技术来发现遗传发现。
将创建一个方法学模板来分类所有其他高影响库相关的变体
从反应性到主动分类过渡的步骤。此外,我们将帮助建立方法
使用平行机械技术将临床发现与变异表征相关。这是一个
创新的积极主动,数据驱动的方法,可供临床医生和研究团队确定
给定变体的可行性并为预测模型提供信息,以揭示新的结构功能见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Lochbaum Eckhardt其他文献
Lee Lochbaum Eckhardt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Lochbaum Eckhardt', 18)}}的其他基金
Multiomics and Functional Characterization Establish Druggable Targets for PVC-Driven Idiopathic VF
多组学和功能表征为 PVC 驱动的特发性心室颤动建立药物靶标
- 批准号:
10750784 - 财政年份:2023
- 资助金额:
$ 40.67万 - 项目类别:
Deep Mutational Scanning and Functional Analysis of Repolarization Determinants
复极化决定因素的深度突变扫描和功能分析
- 批准号:
10599287 - 财政年份:2022
- 资助金额:
$ 40.67万 - 项目类别:
KCNJ2-Induced Arrhythmia Mechanisms in CPVT and Heart Failure.
KCNJ2 诱导 CPVT 和心力衰竭的心律失常机制。
- 批准号:
10228058 - 财政年份:2018
- 资助金额:
$ 40.67万 - 项目类别:
KCNJ2-Induced Arrhythmia Mechanisms in CPVT and Heart Failure.
KCNJ2 诱导 CPVT 和心力衰竭的心律失常机制。
- 批准号:
9975894 - 财政年份:2018
- 资助金额:
$ 40.67万 - 项目类别:
Arrhythmia Mechanisms from Inherited and Acquired Caveolin3 Dysregulation of IK1
IK1 遗传性和获得性 Caveolin3 失调引起的心律失常机制
- 批准号:
9100905 - 财政年份:2015
- 资助金额:
$ 40.67万 - 项目类别:
Arrhythmia Mechanisms from Inherited and Acquired Caveolin3 Dysregulation of IK1
IK1 遗传性和获得性 Caveolin3 失调引起的心律失常机制
- 批准号:
9243303 - 财政年份:2015
- 资助金额:
$ 40.67万 - 项目类别:
Training Program in Translational Cardiovascular Science
转化心血管科学培训项目
- 批准号:
10270772 - 财政年份:2001
- 资助金额:
$ 40.67万 - 项目类别:
Training Program in Translational Cardiovascular Science
转化心血管科学培训计划
- 批准号:
10687983 - 财政年份:2001
- 资助金额:
$ 40.67万 - 项目类别:
Training Program in Translational Cardiovascular Science
转化心血管科学培训项目
- 批准号:
10382467 - 财政年份:2001
- 资助金额:
$ 40.67万 - 项目类别:
相似国自然基金
TMEM30a在致心律不齐性右心室心肌病中的作用及机制研究
- 批准号:82100367
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:青年科学基金项目
人参抗心律不齐活性成分及其构效关系的研究*3
- 批准号:28970070
- 批准年份:1989
- 资助金额:2.5 万元
- 项目类别:面上项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 40.67万 - 项目类别:
Spatiotemporal visualization of adenylyl cyclase signaling
腺苷酸环化酶信号传导的时空可视化
- 批准号:
10664707 - 财政年份:2023
- 资助金额:
$ 40.67万 - 项目类别:
Structural dynamics of voltage-gated ion channels and their implications for ion permeation and drug modulation
电压门控离子通道的结构动力学及其对离子渗透和药物调节的影响
- 批准号:
10583283 - 财政年份:2023
- 资助金额:
$ 40.67万 - 项目类别:
Genetic and pharmacologic elimination of myotonia from myotonic dystrophy type 1
通过遗传和药物消除 1 型强直性肌营养不良引起的肌强直
- 批准号:
10750357 - 财政年份:2023
- 资助金额:
$ 40.67万 - 项目类别:
Ryanodine receptor structure and function in heart failure
Ryanodine 受体结构和心力衰竭中的功能
- 批准号:
10628917 - 财政年份:2023
- 资助金额:
$ 40.67万 - 项目类别: