Engineering MicroEnvironment Core (EMEC)
工程微环境核心 (EMEC)
基本信息
- 批准号:10462790
- 负责人:
- 金额:$ 16.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAnatomyBiocompatible MaterialsBiological ModelsBiomechanicsBiomedical EngineeringBiomimeticsBiophysicsCardiovascular systemCategoriesCell AdhesionCell Culture TechniquesCellsCoculture TechniquesCommunicable DiseasesComputer ModelsConnective TissueConsultationsCustomDevelopmentDiseaseEngineeringEnteralEnvironmentEpithelialEpithelial CellsExtracellular MatrixFunctional disorderFundingGoalsHumanHuman ResourcesHydrogelsImmuneIndividualInfectionInfectious Diseases ResearchIntestinesKnowledgeLeadershipLiquid substanceLungLung infectionsMechanical StimulationModelingModificationMoldsMucous MembraneMucous body substanceNeuronsOxygenPathogenesisPerfusionPhysical environmentPhysiologicalPhysiologyPre-Clinical ModelProductionPropertyPublic HealthResearchResearch PersonnelRespiratory DiseaseRespiratory Tract InfectionsRiceRoleServicesSurfaceSystemTechnologyTechnology TransferTestingTimeTissue EngineeringTissuesTrainingUnited States National Institutes of HealthUniversitiesWorkairway epitheliumbasecell communitycell transformationcostdesignenteric infectionexperiencegastrointestinalgastrointestinal epitheliumgastrointestinal systemhuman diseasehuman tissueimprovedin vitro Modelintestinal epitheliummechanical behaviormechanical loadmembernoveloxygen transportpathogenprofessorrespiratoryscreeningtool
项目摘要
PROJECT SUMMARY – Core C
New pre-clinical models of both the airway and gastrointestinal epithelium, especially those that adequately
reflect relevant human 3D physiology and disease pathophysiology, are desperately needed to elucidate disease
mechanisms and identify avenues for treatment. The overall objective of the Engineering MicroEnvironment
Core (EMEC) is to provide the group of Biomimetic Collaborative Research Center (BCRC) investigators with
biomaterial and fluidic chamber platforms and additional enabling technologies to improve human
gastrointestinal and lung systems for the studies proposed in Projects 1-3 and the Human Biomimetic Scientific
Core (HBSC, Core B). These biomimetic systems are designed to replicate key aspects of the epithelial cells’
3D physiological and physical environment. These platforms will utilize the biomaterial and tissue engineering
technologies that we established during our original NAMSED funding, and will also build upon these
technologies to expand our capabilities to answer questions about the role of the host mucus layer, cell physical
microenvironment, and cell communities in intestinal and lung infections. The service component of the EMEC
will be to provide engineering tools, including (1) preparing “TransWell Trough” systems to apply flow to co-
cultures of anatomically-distinct epithelial cells, (2) fabricating tissue engineering/biomaterial platforms to support
intestinal or lung epithelial cell cultures, (3) fabricating millifluidic perfusion chambers (mPC) for flow across
intestinal epithelial cells ± pathogens, (4) fabricating and maintaining calibrated stocks of oxygen-sensing
hydrogel-based microparticles, (5) 3D printing of molds and other components of the culture systems being
fabricated, (6) quantifying tissue and biofluid mechanical behavior to prepare in vitro models with physiologically
faithful material properties, (7) computational modeling of fluid dynamics and oxygen transport in culture
systems, and (8) transferring technology through training group members and personnel at other funded U19s.
The development component of EMEC will enhance the previously tested culture systems to mimic the
complexity of the 3D host environment in the proposed studies, through (1) developing a modification of the
TransWell Trough model with dual flow, (2) modifying the hydrogels to enable 3D encapsulation of immune and
neural cells for co-culture studies, (3) developing a modified mPC system to grow the epithelial cells atop a
biomimetic hydrogel surface, and (4) developing customized mucosal mimics to facilitate screening of host
mucus-pathogen interactions. Providing these platforms, tools, and services through a central core will save
time, effort, and costs, accelerate the rate of discovery, and enable comparison of results across Projects
whenever possible. The EMEC will be consultative and responsive to needs of the individual Projects, which
may change as the research proceeds and as the overall field evolves. New activities will be developed to meet
the needs of the Project investigators. Our goal is complementary and collaborative in these efforts to develop
biomimetic engineering models to study the role of the host mucosal surface in enteric and respiratory infections.
项目摘要 - 核心C
气道和胃肠道上皮的新的临床前模型,尤其是那些适当的上皮
反映相关的人类3D生理学和疾病病理生理学,迫切需要阐明疾病
机制并确定治疗途径。工程微环境的总体目标
Core(EMEC)是为仿生协作研究中心(BCRC)研究人员提供
生物材料和流体室平台以及其他能够改善人类的技术
在项目1-3和人类仿生科学的研究中提出的研究的胃肠道和肺系统
核心(HBSC,核心B)。这些仿生系统旨在复制上皮细胞的关键方面
3D物理环境。这些平台将利用生物材料和组织工程
我们在原始命名资金中建立的技术,也将基于这些技术
扩大我们能力的技术,以回答有关宿主粘液层的作用,细胞物理的问题
微环境以及肠道和肺部感染中的细胞群落。 EMEC的服务组成部分
将提供工程工具,包括(1)准备“ Trangwell”系统以应用流程
解剖上上皮细胞的培养物,(2)制造组织工程/生物材料平台以支持
肠道或肺上皮细胞培养物,(3)制造毫米流体灌注室(MPC),以使流过流过
肠上皮细胞±病原体(4)制造和维持氧气的校准库存
基于水凝胶的微粒,(5)3D霉菌的印刷和其他培养系统的其他成分是
制造的,(6)量化组织和生物流体机械行为,以便在体外模型中进行物理上的体外模型
忠实的材料特性,(7)培养中流体动力和氧运输的计算建模
系统,以及(8)通过其他资助U19的培训小组成员和人员转移技术。
EMEC的开发成分将增强先前测试的培养系统,以模仿
3D主机环境在拟议的研究中的复杂性,通过(1)形成修改
具有双流动的Trandwell槽模型,(2)修改水凝胶以实现3D封装的免疫和
神经细胞用于共培养研究,(3)开发一个改良的MPC系统,以在A上种植上皮细胞
仿生水凝胶表面和(4)开发自定义的粘膜模拟物以促进宿主筛查
粘液病原体相互作用。通过中心核心提供这些平台,工具和服务将节省
时间,精力和成本,加速发现率,并能够比较项目的结果
尽可能。 EMEC将对单个项目的需求进行咨询和响应,
随着研究的进行和整体领域的发展,可能会发生变化。将开发新的活动以满足
项目调查人员的需求。我们的目标是完整和协作的,以发展
仿生工程模型研究宿主粘膜表面在肠和呼吸道感染中的作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATHRYN JANE GRANDE-ALLEN其他文献
KATHRYN JANE GRANDE-ALLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATHRYN JANE GRANDE-ALLEN', 18)}}的其他基金
Differential Shear Forces on Endocardial Endothelial Cells Regulate a Fibrotic Spectrum in the Left Ventricular Outflow Tract
心内膜内皮细胞上的差异剪切力调节左心室流出道中的纤维化谱
- 批准号:
10170409 - 财政年份:2018
- 资助金额:
$ 16.51万 - 项目类别:
Biomaterial Strategies for Tissue Engineering Pediatric Valves
组织工程儿科瓣膜的生物材料策略
- 批准号:
8315987 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Tissue Engineering Strategies: Effects on Valvular Interstitial Cell Metabolism
组织工程策略:对瓣膜间质细胞代谢的影响
- 批准号:
8241919 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
- 批准号:
8663737 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
- 批准号:
8250357 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Tissue Engineering Strategies: Effects on Valvular Interstitial Cell Metabolism
组织工程策略:对瓣膜间质细胞代谢的影响
- 批准号:
8113636 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Biomaterial Strategies for Tissue Engineering Pediatric Valves
组织工程儿科瓣膜的生物材料策略
- 批准号:
8178833 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
- 批准号:
8086246 - 财政年份:2011
- 资助金额:
$ 16.51万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modality-independent representations of object shape in macaque inferotemporal cortex
猕猴下颞叶皮层物体形状的模态无关表示
- 批准号:
10679530 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
3D Bioprinted Nipple-Areolar Complex Implants
3D 生物打印乳头乳晕复合植入物
- 批准号:
10672784 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
New Hardware and Software Developments for Improving Prostate Metabolic MR Imaging
用于改善前列腺代谢 MR 成像的新硬件和软件开发
- 批准号:
10680043 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别:
Small Scale Robotics for Automated Dental Biofilm Theranostics
用于自动化牙科生物膜治疗的小型机器人
- 批准号:
10658028 - 财政年份:2023
- 资助金额:
$ 16.51万 - 项目类别: