Modeling circuit-specific psychiatric deep brain stimulation and its cognitive effects in macaques
模拟回路特异性精神深部脑刺激及其对猕猴的认知影响
基本信息
- 批准号:10462804
- 负责人:
- 金额:$ 68.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAnimal ModelAnimalsAxonBehavioralBiological ModelsBrainCell NucleusClinicalClinical EngineeringClinical TrialsCognitionCognitiveCollaborationsComplexCorpus striatum structureDeep Brain StimulationDiseaseDistalElectrodesElectrophysiology (science)ElementsFiberFunctional disorderGoalsHomologous GeneHumanImpairmentImplantIndividualInstitutionInternal CapsuleLateralLeadMacacaMacaca mulattaMapsMental DepressionMental disordersMethodsModelingMovement DisordersMusObsessive-Compulsive DisorderPathway interactionsPatientsPatternPerformancePost-Traumatic Stress DisordersPrefrontal CortexPrimatesProcessPsychiatryRattusResearchResearch Domain CriteriaResearch PersonnelResolutionRodentRoleRunningSiteStructureTechniquesTestingThalamic structureVentral StriatumWorkaddictionbaseclinical efficacyclinical practicecognitive abilitycognitive controlcognitive neuroscienceexhaustiongenetic manipulationgray matterimprovedinsightneural correlatenonhuman primaterelating to nervous systemresponsesuccesstoolvirus geneticswhite matter
项目摘要
Abstract
Neurostimulation, including invasive methods like deep brain stimulation (DBS), is an increasingly
important approach to treating mental illness. It offers the possibility of directly targeting specific circuits to
reverse circuit dysfunctions that underpin mental disorders. Unfortunately, the clinical efficacy of brain
stimulation is still unreliable. DBS, for instance, has extraordinary results in the hands of expert academics, but
has not passed a well-controlled US-based clinical trial. The critical barrier is that it is very difficult to study
or optimize DBS’ mechanisms of action in psychiatric illness. Animal studies would be ideal for refining
stimulation strategies, but the primary species for modeling mental illness are rats and mice. The most
promising DBS treatments act on circuits that lack true rodent homologues. We and other investigators
have shown that, at multiple brain targets, effective DBS alters neural activity distally, especially in lateral
prefrontal cortex (LPFC), which is only found in primates. Non-human primates (NHPs), especially macaques,
which have strong LFPC homology to humans, would thus be an excellent model for understanding how DBS
works. Macaque studies have yielded major insight in other DBS applications such as movement disorders.
In this project, we demonstrate an approach to modeling DBS in non-human primates by focusing on
cognitive control. Cognitive control is the ability to regulate one’s own cognition, such as withholding a habitual
response in favor of a more goal-aligned option. It is disrupted in depression, obsessive compulsive disorder
(OCD), and emerging DBS indications like addiction. Co-PI Widge recently showed that DBS at a well-studied
target, the ventral internal capsule/ ventral striatum (VCVS), acts in part by improving cognitive control.
That improvement appears to involve PFC activity changes. The challenge is that it is not clear why or
through what pathways VCVS DBS improves cognitive control, and thus we lack the ability to optimize the
effect. We propose to answer that question by stimulating individual tracts and gray matter nuclei that comprise
the VCVS DBS target, in rhesus macaques performing a standard cognitive control task (the Flanker task).
During stimulation, we will record single units and local field potentials from multiple PFC structures, identifying
mechanisms by which VCVS DBS exerts pro-cognitive effects. Aim 1 maps these mechanisms relative to
cortico-thalamic tracts in the internal capsule, while Aim 2 extends that mapping to cortico-striatal tracts and
striatal nuclei. These studies are possible through a unique clinical, engineering, and neuroscientific
collaboration. Co-I Johnson has developed methods for “steering” electrical neurostimulation to preferentially
target structures surrounding a DBS electrode, allowing circuit-targeted neurostimulation without the use of
viral/genetic manipulations. His expertise supports our team’s capabilities in macaque cognitive neuroscience
(contact PI Hayden), clinical DBS (Widge), and striatal anatomy (co-I Heilbronner).
抽象的
神经刺激,包括诸如深脑刺激(DBS)之类的侵入性方法,越来越多
治疗精神疾病的重要方法。它提供了直接针对特定电路的可能性
基于精神障碍的反向电路功能障碍。不幸的是,大脑的临床效率
刺激仍然不可靠。例如,DBS在专家学者手中取得了非凡的成果,但
尚未通过基于美国的临床试验。关键的障碍是很难学习
或优化DBS在精神病中的作用机制。动物研究是精炼的理想选择
刺激策略,但是建模精神疾病的主要物种是大鼠和小鼠。最多
有前途的DBS治疗法对缺乏真正的啮齿动物同源物的电路。我们和其他调查员
已经表明,在多个大脑目标下,有效的DB分别改变了神经活动,尤其是在以后
前额叶皮层(LPFC),仅在私人中找到。非人类素数(NHP),尤其是猕猴,
因此,与人类具有强大的LFPC同源性,将是理解DB的绝佳模型
作品。猕猴的研究对其他DBS应用(例如运动障碍)产生了重大见解。
在这个项目中,我们通过专注于非人类隐私来建模DB的方法
认知控制。认知控制是能够调节自己的认知的能力,例如保留习惯性
响应更有利于目标一致的选项。它在抑郁症,强迫症中被残疾
(OCD)和成瘾等新兴DBS指示。 Co-Pi Widge最近显示了DBS的DB
靶标,腹侧胶囊/腹侧纹状体(VCV),部分通过改善认知控制。
这种改进似乎涉及PFC活动的变化。挑战是尚不清楚为什么或
通过途径VCVS DBS可以改善认知控制,因此我们缺乏优化的能力
影响。我们建议通过刺激完成的单个道和灰质核来回答这个问题
VCVS DBS目标,在执行标准认知控制任务(侧面任务)的恒河猕猴中。
在刺激期间,我们将记录来自多个PFC结构的单个单元和本地场电位,以识别
VCVS DBS执行促进认知效应的机制。 AIM 1地图这些机制相对于
内部胶囊中的皮质 - 丘脑区域,而AIM 2则将其映射到皮质 - 纹状体区域,并将其映射到
纹状体核。这些研究是通过独特的临床,工程和神经科学方法进行的
合作。约翰逊(Co-I Johnson)开发了“转向”电神经刺激的方法
DBS电极周围的目标结构,允许靶向电路的神经刺激,而无需使用
病毒/遗传操作。他的专业知识支持我们团队在猕猴认知神经科学方面的能力
(与Pi Hayden联系),临床DBS(Widge)和纹状体解剖结构(Co-I Heilbronner)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BENJAMIN Y HAYDEN其他文献
BENJAMIN Y HAYDEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BENJAMIN Y HAYDEN', 18)}}的其他基金
Neural basis of behavior in freely moving macaques
自由移动猕猴行为的神经基础
- 批准号:
10832869 - 财政年份:2023
- 资助金额:
$ 68.24万 - 项目类别:
Neural basis of behavior in freely moving macaques
自由移动猕猴行为的神经基础
- 批准号:
10442753 - 财政年份:2021
- 资助金额:
$ 68.24万 - 项目类别:
Neural basis of behavior in freely moving macaques
自由移动猕猴行为的神经基础
- 批准号:
10275271 - 财政年份:2021
- 资助金额:
$ 68.24万 - 项目类别:
Modeling circuit-specific psychiatric deep brain stimulation and its cognitive effects in macaques
模拟回路特异性精神深部脑刺激及其对猕猴的认知影响
- 批准号:
10668349 - 财政年份:2020
- 资助金额:
$ 68.24万 - 项目类别:
Modeling circuit-specific psychiatric deep brain stimulation and its cognitive effects in macaques
模拟回路特异性精神深部脑刺激及其对猕猴的认知影响
- 批准号:
10251329 - 财政年份:2020
- 资助金额:
$ 68.24万 - 项目类别:
Using Computation to Achieve Breakthroughs in Neuroscience
利用计算实现神经科学的突破
- 批准号:
10220673 - 财政年份:2018
- 资助金额:
$ 68.24万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
利用碱基编辑器治疗肥厚型心肌病的动物模型研究
- 批准号:82300396
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用小型猪模型评价动脉粥样硬化易感基因的作用
- 批准号:32370568
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
丁苯酞通过调节细胞异常自噬和凋亡来延缓脊髓性肌萎缩症动物模型脊髓运动神经元的丢失
- 批准号:82360332
- 批准年份:2023
- 资助金额:31.00 万元
- 项目类别:地区科学基金项目
APOBEC3A驱动膀胱癌发生发展的动物模型及其机制研究
- 批准号:82303057
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 68.24万 - 项目类别:
In Vivo Function and Metabolism Evaluation of Glaucomatous RGCs by Two-Photon Scanning Laser Ophthalmology
双光子扫描激光眼科评价青光眼 RGC 的体内功能和代谢
- 批准号:
10660761 - 财政年份:2023
- 资助金额:
$ 68.24万 - 项目类别:
The Pain in a Dish Assay (PIDA): a high throughput system featuring human stem cell-derived nociceptors and dorsal horn neurons to test compounds for analgesic activity
皿中疼痛测定 (PIDA):一种高通量系统,具有人类干细胞来源的伤害感受器和背角神经元,用于测试化合物的镇痛活性
- 批准号:
10759735 - 财政年份:2023
- 资助金额:
$ 68.24万 - 项目类别:
Cerebrovascular mitochondria as mediators of neuroinflammation in Alzheimer's Disease
脑血管线粒体作为阿尔茨海默病神经炎症的介质
- 批准号:
10723580 - 财政年份:2023
- 资助金额:
$ 68.24万 - 项目类别:
Contribution of Vitamin D Deficiency to Pathological Progression in Models of Cerebral Hypoperfusion
维生素 D 缺乏对脑低灌注模型病理进展的影响
- 批准号:
10725358 - 财政年份:2023
- 资助金额:
$ 68.24万 - 项目类别: