Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
基本信息
- 批准号:10460598
- 负责人:
- 金额:$ 37.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAnaerobic BacteriaAnimal ModelAnti-Bacterial AgentsAntibiotic ResistanceAntibiotic TherapyAntibioticsBacillusBacteriaBiocompatible MaterialsBiological AvailabilityBlood CellsCationsCenters for Disease Control and Prevention (U.S.)Cessation of lifeClostridium difficileDevelopmentEpidemicEscherichia coliEtiologyFoundationsGenerationsGoalsGram-Negative BacteriaHamstersHost DefenseHydrophobicityInfectionIntestinesLeadLightLiteratureMammalian CellMembraneMetronidazoleModelingModificationMusOralPeptidesPolymersPredispositionPseudomembranous ColitisPublishingRecurrenceRelapseReportingReproduction sporesResearchResistanceResistance developmentRisk FactorsSeriesTestingToxinTreatment EfficacyUrsidae FamilyVancomycinWorkantibiotic-associated diarrheaantimicrobial drugbasebiodegradable polymercostcytotoxicitydesigngut microbiotaimprovedindexinginnovationmicrobialmouse modelnovelpathogenic bacteriapolycarbonatepreventsound
项目摘要
Clostridium difficile is a Gram-positive, spore-forming anaerobic and toxin-producing bacillus. It is the most
common cause of nosocomial antibiotic-associated diarrhea and the etiologic agent of pseudomembranous co-
litis with about 453,000 cases and 29,000 deaths yearly in the U.S. as reported by CDC in 2015. Central to
predisposition to C. difficile infection (CDI) is the disruption of the gut microbiota by antibiotics. The first-line
therapy for the treatment of CDI is oral metronidazole or vancomycin. None of these is fully effective, and an
estimated 15-35% of those infected with C. difficile relapse following treatment. The recently approved fidax-
omicin has improved efficacy in preventing recurrence, but its high cost precludes its routine use. As such, novel
antibiotic agents with low cost and high efficacy are desperately needed to address the alarming CDI epidemic.
We recently have developed a new series of biodegradable polymer biomaterials-polycarbonates. These pol-
ymers, containing both hydrophobic and cationic groups, mimic host-defense peptides (HDPs) and kill bacteria
through disruption of bacterial membranes. Importantly, these polymers can be orally administered and eradicate
C. difficile infection in mice with high efficacy which is even superior to vancomycin. Furthermore, these polymers
are not active against Gram-negative bacteria, and therefore they do not destroy commensal Gram-negative
intestinal microbes such as E. coli. To the best of our knowledge, this is the first example of biodegradable
polymers with oral bioavailability against C. difficile to date. Compared to vancomycin, these polymers are easy
to synthesize in a large scale with very low cost, and highly amendable to optimization, making them very prom-
ising for antibiotic therapy against C. difficile. Our long-term goal is to develop biodegradable polycarbonates as
new generation of antibiotics against C. difficile. The objective of this project is to further develop these biode-
gradable polymers with greater potency through optimization. As such, based on our preliminary results, we will
first design and synthesize new generation of polycarbonate derivatives bearing optimized hydrophobic and
cationic groups that can kill C. difficile with higher potency and selectivity. Following that, we will determine
antibacterial activity and selectivity of the newly designed polymers against C. difficile. The most potent polymers
(MIC < 0.5 µg/mL, Selective Index (SI): HC50/MICC.difficile > 2000 for blood cells, IC50/MICC.difficile > 250 for mamma-
lian cells) will be further explored for their mechanism of action. Subsequently, we will also evaluate therapeutic
efficacy of these most potent polycarbonates in animal models (mouse model and acute hamster model) of CDI.
Our project is significant, because we are tackling the infection from the significant bacterial strain C. difficile,
and we are developing novel polymeric biomaterials. We also believe our project is innovative, as we are de-
veloping a new class of biodegradable and orally available polycarbonates, which have already showed remark-
able efficacy and selectivity, and could be synthesized in large scale with low cost. As a result, a new generation
of antibiotic agents combating C. difficile will be resulted from our project.
艰难梭状芽胞杆菌是一种革兰氏阳性,形成孢子的厌氧和产生毒素的芽孢杆菌。这是最大的
医院抗生素相关腹泻的常见原因和假膜共同的病因学因素
疾病预防控制中心在2015年报告
艰难梭菌感染(CDI)的易感性是抗生素对肠道菌群的破坏。第一线
治疗CDI的治疗是口服甲硝唑或万古霉素。这些都不是完全有效的,并且
治疗后,估计感染了艰难梭菌缓解的患者中有15-35%。最近批准的Fidax-
Omicin在预防复发方面提高了效率,但其高成本排除了其常规使用。因此,小说
迫切需要低成本和高效率的抗生素以解决令人震惊的CDI流行病。
我们最近开发了一系列新系列可生物降解的聚合物生物材料 - 聚碳酸酯。这些pol-
Ymers含有疏水和阳离子基团,模拟宿主防御肽(HDP)并杀死细菌
通过破坏细菌中值膜。重要的是,这些聚合物可以口服并放射
高效率的小鼠艰难梭菌感染,甚至优于万古霉素。此外,这些聚合物
对革兰氏阴性细菌没有活性
肠道微生物,例如大肠杆菌。据我们所知,这是可生物降解的第一个例子
迄今为止,具有针对艰难梭菌的口服生物利用度的聚合物。与万古霉素相比,这些聚合物很容易
大规模合成的成本非常低,并且对优化具有很高的修正,使其非常合成
用于针对艰难梭菌的抗生素治疗。我们的长期目标是开发可生物降解的聚碳酸酯作为
针对艰难梭菌的新一代抗生素。该项目的目的是进一步发展这些生物座
通过优化具有更大效力的可分级聚合物。因此,根据我们的初步结果,我们将
首次设计并合成新一代的聚碳酸酯衍生物,具有优化的疏水性和
可以以更高的效力和选择性杀死艰难梭菌的阳离子组。在此之后,我们将确定
新设计的聚合物对艰难梭菌的抗菌活性和选择性。最有效的聚合物
(MIC <0.5 µg/mL,选择性指数(SI):HC50/MICC.Difficile> 2000,用于血细胞,IC50/MICC.Difficile> 250用于Mamma-
Lian细胞)将进一步探索其作用机理。随后,我们还将评估治疗
这些最有效的聚碳酸酯在CDI的动物模型(小鼠模型和急性仓鼠模型)中的功效。
我们的项目很重要,因为我们正在解决重要的细菌菌株艰难梭菌的感染,
我们正在开发新型的聚合生物材料。我们还认为我们的项目具有创新性,因为我们正在
循环一类新的可生物降解和口服的多碳酸盐,它们已经显示
可以轻松和选择性,并且可以大规模合成以低成本的综合。结果,新一代
与艰难梭菌作斗争的抗生素剂将由我们的项目产生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianfeng Cai其他文献
Jianfeng Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianfeng Cai', 18)}}的其他基金
Characterization and Inhibition of protein-protein interactions involving Staphylococcus aureus GpsB
金黄色葡萄球菌 GpsB 蛋白-蛋白相互作用的表征和抑制
- 批准号:
10437907 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别:
Characterization and Inhibition of protein-protein interactions involving Staphylococcus aureus GpsB
金黄色葡萄球菌 GpsB 蛋白-蛋白相互作用的表征和抑制
- 批准号:
10317549 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
9907591 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
10023161 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
10685381 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Novel polymer biomaterials combating C. difficile infection
对抗艰难梭菌感染的新型聚合物生物材料
- 批准号:
10215510 - 财政年份:2019
- 资助金额:
$ 37.38万 - 项目类别:
Alpha-AApeptides as a novel class of antimicrobial biomaterials
α-AA肽作为一类新型抗菌生物材料
- 批准号:
8961335 - 财政年份:2015
- 资助金额:
$ 37.38万 - 项目类别:
Alpha-AApeptides as a novel class of antimicrobial biomaterials
α-AA肽作为一类新型抗菌生物材料
- 批准号:
9260896 - 财政年份:2015
- 资助金额:
$ 37.38万 - 项目类别:
Requesting HPLC for the project of "Alpha-AApeptides as a Novel Class of Antimicrobial Biomaterials"
“α-A肽作为新型抗菌生物材料”项目申请HPLC
- 批准号:
9700847 - 财政年份:2015
- 资助金额:
$ 37.38万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of anaerobic microbiota in cystic fibrosis airway disease trajectory
厌氧微生物群在囊性纤维化气道疾病轨迹中的作用
- 批准号:
10716654 - 财政年份:2023
- 资助金额:
$ 37.38万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10487660 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
Impact of Microbial Dysbiosis on MAIT Cell Tissue Repair Program after Acute HIV Infection
急性 HIV 感染后微生物失调对 MAIT 细胞组织修复程序的影响
- 批准号:
10481899 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
Central metabolism of Salmonella in the inflamed gut
发炎肠道中沙门氏菌的中枢代谢
- 批准号:
10677940 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
Microbiota Regulation of Pulmonary Complications Post-HCT
HCT 后肺部并发症的微生物群调节
- 批准号:
10491061 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别: