A community-driven development of the brain imaging data standard (BIDS) to describe macroscopic brain connections
由社区驱动的大脑成像数据标准(BIDS)的开发,以描述宏观的大脑连接
基本信息
- 批准号:10460628
- 负责人:
- 金额:$ 32.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-06 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAdoptionAnatomyArchivesAreaBRAIN initiativeBrainBrain imagingCloud ComputingCommunitiesComputer softwareDataData CollectionData SetDevelopmentDiffusionDiffusion Magnetic Resonance ImagingDirectoriesDiseaseElectroencephalographyEnsureFacultyFeedbackFoundationsFunctional Magnetic Resonance ImagingFundingGenerationsGoalsHealthHumanIndividualInfrastructureLettersLibrariesMagnetic Resonance ImagingMapsMeasuresMetadataMethodsModalityModelingMonoclonal Antibody R24NeurosciencesPersonsPositron-Emission TomographyPostdoctoral FellowProcessPublished CommentPublishingRecommendationReproducibilityResearch PersonnelScientific Advances and AccomplishmentsServicesSignal TransductionSolidStandardizationStructureStudentsTestingTimeUpdateValidationWorkbaseconnectomedata fusiondata sharingdata standardsdata structuredesigndiffusion weightedexperimental studyfile formatinstrumentationinterestmeetingsneuroimagingprototypesocial mediasoftware developmenttooltool developmentusabilityvirtualwhite matter
项目摘要
Project Summary/Abstract
The Brain Imaging Data Structure (BIDS) is a BRAIN initiative (R24 MH114705)
community-driven standard meant to maximize neuroimaging data sharing, and facilitate analysis tool
development. We propose to extend the standard to encompass derivatives resulting from experiments
related to both functional as well as structural magnetic resonance imaging data that describe
macroscopic brain connectivity estimates. The focus of this proposal is to advance BIDS to describe the
entire experimental workflow—from minimally processed anatomical, functional and diffusion MRI data
through connectivity matrices and tractometry features—in service of supporting BRAIN initiative
studies of large-scale connectivity of human and nonhuman brains. BIDS was initially scoped to MRI
data of the brain, but the standard has set up a solid infrastructure to steer the community and has
been extended to cover a range of other modalities (PET, EEG, MEG, ECoG). Since its first
announcement, BIDS has evolved to become an organized community with shared governance and a
strong impact well beyond the U.S. BRAIN initiative. To date, 131 individuals among faculty, students,
and postdocs contributed to the development of the standard and the article describing BIDS has been
cited 277 times.
Current gaps exist in developing BIDS to effectively support the process of scientific results
generation. This is because the standard does not yet describe brain features that can be extracted
from MRI data and that are routinely used to perform statistical tests and complete scientific studies.
These features comprise connectivity maps, structural and functional connections, major white matter
tracts, diffusion signal models as well as white matter tractograms and tractometry. Sharing processed
data and features in addition to raw and minimally-processed data is critical to accelerating scientific
discovery. This is because substantial effort, software, and hardware instrumentation, and know-how
are required to bring raw data to a usable state. One previous project (R24 MH114705) laid the
foundations for the BIDS derivatives standard, ultimately leading to the existing Common Derivatives
standard. However, the current BIDS derivative standard does not cover advanced data derivatives that
describe brain connectivity experiments. The current proposal is to advance the BIDS standard beyond
preprocessed data to describe data products generated from experiments and models fit after
preprocessing. The project will deliver a community-developed standard describing brain connectivity
experiments. The standard will be accompanied by software to validate the datasets.
项目概要/摘要
脑成像数据结构 (BIDS) 是 BRAIN 的一项倡议 (R24 MH114705)
社区驱动的标准旨在最大化神经影像数据共享并促进分析工具
我们建议将该标准扩展到包括实验产生的衍生物。
与描述功能和结构的磁共振成像数据相关
该提案的重点是推进 BIDS 来描述大脑的宏观连接。
整个实验工作流程——来自经过最少处理的解剖、功能和扩散 MRI 数据
通过连接矩阵和牵引测量功能——支持 BRAIN 计划
对人类和非人类大脑大规模连接的研究最初仅限于 MRI。
大脑的数据,但该标准已经建立了坚实的基础设施来指导社区,并且已经
自首次推出以来,已扩展到涵盖一系列其他模式(PET、EEG、MEG、ECoG)。
公告称,BIDS 已发展成为一个具有共同治理和
迄今为止,已有 131 名教师、学生、
和博士后为标准的制定做出了贡献,描述 BIDS 的文章已被
被引用277次。
目前在开发 BIDS 来有效支持科学成果进程方面存在差距
这是因为该标准尚未描述可以提取的大脑特征。
来自 MRI 数据,通常用于执行统计测试和完成科学研究。
这些特征包括连接图、结构和功能连接、主要白质
束、扩散信号模型以及白质束图和束测量共享。
除了原始数据和经过最低限度处理的数据之外,数据和特征对于加速科学发展至关重要
这是因为大量的努力、软件和硬件仪器以及专有技术。
需要将原始数据变为可用状态。之前的一个项目(R24 MH114705)奠定了这一点。
BIDS 衍生品标准的基础,最终形成现有的通用衍生品
然而,当前的 BIDS 衍生品标准不涵盖高级数据衍生品。
描述大脑连接实验。当前的提议是超越 BIDS 标准。
预处理数据来描述实验生成的数据产品和模型拟合后的结果
该项目将提供一个社区开发的描述大脑连接的标准。
该标准将附带软件来验证数据集。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neurodesk: An accessible, flexible, and portable data analysis environment for reproducible neuroimaging.
Neurodesk:一个可访问、灵活且便携式的数据分析环境,用于可重复的神经成像。
- DOI:10.21203/rs.3.rs-2649734/v1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Renton,AngelaI;Dao,ThuyT;Johnstone,Tom;Civier,Oren;Sullivan,RyanP;White,DavidJ;Lyons,Paris;Slade,BenjaminM;Abbott,DavidF;Amos,ToluwaniJ;Bollmann,Saskia;Botting,Andy;Campbell,MeganEJ;Chang,Jeryn;Close,ThomasG;Eckstei
- 通讯作者:Eckstei
GPU-accelerated connectome discovery at scale.
- DOI:10.1038/s43588-022-00250-z
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Sreenivasan, Varsha;Kumar, Sawan;Pestilli, Franco;Talukdar, Partha;Sridharan, Devarajan
- 通讯作者:Sridharan, Devarajan
A labeled Clinical-MRI dataset of Nigerian brains.
尼日利亚大脑的标记临床 MRI 数据集。
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wogu,Eberechi;Filima,Patrick;Caron,Bradley;Levitas,Daniel;Herholz,Peer;Leal,Catherine;Mehboob,MohammedF;Hayashi,Soichi;Akintoye,Simisola;Ogoh,George;Godwin,Tawe;Eke,Damian;Pestilli,Franco
- 通讯作者:Pestilli,Franco
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franco Pestilli其他文献
Franco Pestilli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franco Pestilli', 18)}}的其他基金
A community-driven development of the brain imaging data standard (BIDS) to describe macroscopic brain connections
由社区驱动的大脑成像数据标准(BIDS)的开发,以描述宏观的大脑连接
- 批准号:
10253558 - 财政年份:2021
- 资助金额:
$ 32.86万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Open science & cloud computing of MEEG
CRCNS:美法数据共享提案:开放科学
- 批准号:
10428625 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
CRCNS: US-France Data Sharing Proposal: Open science & cloud computing of MEEG
CRCNS:美法数据共享提案:开放科学
- 批准号:
10266850 - 财政年份:2020
- 资助金额:
$ 32.86万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Small Molecule Probes for Fluorescence-guided Head and Neck Cancer Surgery
用于荧光引导头颈癌手术的小分子探针
- 批准号:
10644519 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别:
Remote Kinesiology for Improving Human Health with Auto-locating Compliant Motion Tracking Stickers and Artificial Intelligence
通过自动定位兼容运动跟踪贴纸和人工智能来改善人类健康的远程运动机能学
- 批准号:
10751952 - 财政年份:2023
- 资助金额:
$ 32.86万 - 项目类别: