Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
基本信息
- 批准号:10461225
- 负责人:
- 金额:$ 43.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithm DesignAnatomyAstrocytesAutomobile DrivingBehaviorBehavioralBinding SitesBiological ModelsBrainCalciumCalcium ionCellsChemicalsColorCommunitiesComplexComputer ModelsComputer SimulationComputer Vision SystemsCyclic AMPDataData AnalysesDatabasesDetectionDiseaseDisease modelDrosophila genusElementsEventFunctional disorderGene Expression ProfileGenesGenomicsGoalsImageInformation TheoryIonsKnowledgeLabelLearningLinkMathematical Model SimulationMeasurementMeasuresMechanicsMethodsMicroscopicModelingMolecularMolecular AnalysisMorphologyNeuromodulatorNeuronsNeuropeptidesNeurosciencesNeurotransmitter ReceptorNeurotransmittersNociceptionOutputPatternPopulationPropertyResolutionRoleSensorySignal TransductionSourceSpeedStatistical Data InterpretationStatistical ModelsStructureSystemTimeTranslatingWorkbasecomputerized toolsexperienceexperimental studyextracellulargenetic manipulationimprovedinformation processingmathematical modelmodel developmentmultiplexed imagingneural circuitneural modelneuroregulationneurotransmissionpostsynapticsensory inputspatiotemporaltooltranscription factor
项目摘要
Project Summary: Project 1 - Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
Astrocytes, the most abundant cells in the brain, express various receptors of neurotransmitters and
neuromodulators and extend thousands of fine cellular leaflets, wrapping around the pre- and postsynaptic
neuronal elements. Studies over past decades have portrayed a picture where astrocytes actively respond to
both local and long projecting neuronal activities, first increasing cytosolic calcium ions (Ca2+) or other internal
signals, then influencing the concentration of extracellular factors and ions and ultimately modifying its gene
expression pattern and morphology. Thus, while neurons are unarguably a necessary player in neural circuits,
astrocytes need to be accounted and integrated into the neural circuits to achieve a more complete
understanding on how the brain works or dysfunctions. Indeed, it is appealing to consider astrocytes and
neurons as a unified circuit, since they participate in the brain information processing in complementary
manners in terms of both temporal and spatial domains. However, precisely how astrocytes temporally
and spatially integrate the molecular signals from diverse neuronal signals, particularly during behavior,
remains poorly understood. Likewise, how the diversity of astrocyte activity, in turn, influences neural circuit
function on various timescales, is unclear. The hypothesis is that a deeper and more complete understanding
on the astrocytes’ contribution to neural circuits can be achieved by systematically measuring,
manipulating, quantifying and modeling the astrocytes’ functional and structural status in the context of
controllable and quantifiable behavior tasks, which is the collective effort proposed by this U19 team.
Leveraging the improved and comprehensive measurement and manipulation of (a) various
neurotransmitters and neuromodulators, (b) multi-scale and multi-level anatomical information, (c)
important intracellular messengers, and (d) genomic signals from the efforts in the other three projects, this
project focuses on building mathematical models (Aim 1) to quantitatively interpret and predict how astrocytes
integrate various neuronal signals, and how the astrocytes regulate the neural circuit in both fast-time and
long-term scales. Considering that astrocytes have complex spatiotemporal dynamics and their morphologies
are irregular and in close contact with diverse neurons, one needs to accurately quantify the astrocyte
dynamics (Aim 2) and faithfully reconstruct the anatomy (Aim 3), to provide the necessary quantitative
description of observations and the fundamental geometric constraints to the model development.
Reciprocally, this project will identify knowledge gaps to suggest new experiments, make predictions to
generate new hypothesis and provide quantification tools to facilitate scientific discoveries for the other three
projects and more broadly for the neuroscience community.
项目摘要:项目 1 - 将星形胶质细胞整合到调节行为的神经回路模型中
星形胶质细胞是大脑中最丰富的细胞,表达各种神经递质受体和
神经调节剂并延伸出数千个细小细胞小叶,包裹在突触前和突触后
过去几十年的研究描绘了星形胶质细胞积极响应的图景。
局部和长期投射的神经元活动,首先增加胞质钙离子 (Ca2+) 或其他内部
信号,然后影响细胞外因子和离子的浓度,最终修改其基因
因此,虽然神经元无疑是神经回路中的必要参与者,
星形胶质细胞需要被考虑并整合到神经回路中以实现更完整的
事实上,考虑星形胶质细胞和大脑如何工作或功能障碍是很有吸引力的。
神经元作为一个统一的电路,因为它们以互补的方式参与大脑信息处理
然而,星形胶质细胞在时间上的具体方式。
并在空间上整合来自不同神经信号的分子信号,特别是在行为过程中,
同样,人们对星形胶质细胞活性的多样性如何影响神经回路也知之甚少。
不同时间尺度上的函数,尚不清楚,假设是更深入、更完整的理解。
星形胶质细胞对神经回路的贡献可以通过系统测量来实现,
在以下情况下操纵、量化和建模星形胶质细胞的功能和结构状态
可控、可量化的行为任务,这是这个U19团队提出的集体努力。
利用改进和全面的测量和操作(a)各种
神经递质和神经调节剂,(b) 多尺度和多层次的解剖信息,(c)
重要的细胞内信使,以及(d)来自其他三个项目的基因组信号,这个
项目重点是建立数学模型(目标 1)来定量解释和预测星形胶质细胞如何
整合各种神经信号,以及星形胶质细胞如何快速和快速地调节神经回路
考虑到星形胶质细胞具有复杂的时空动力学及其形态。
星形胶质细胞不规则且与多种神经元密切接触,需要准确量化星形胶质细胞
动力学(目标 2)并忠实地重建解剖结构(目标 3),以提供必要的定量
观察结果的描述以及模型开发的基本几何约束。
相反,该项目将识别知识差距,以建议新的实验,做出预测
产生新的假设并提供量化工具以促进其他三个的科学发现
项目以及更广泛的神经科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoqiang Yu其他文献
Guoqiang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoqiang Yu', 18)}}的其他基金
Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
- 批准号:
10760193 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
Development of a Wearable Fluorescence Imaging Device for IntraoperativeIdentification of Brain Tumors
开发用于术中识别脑肿瘤的可穿戴荧光成像装置
- 批准号:
10697009 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
- 批准号:
10294803 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
- 批准号:
10693168 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
- 批准号:
10323090 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
- 批准号:
10461939 - 财政年份:2021
- 资助金额:
$ 43.13万 - 项目类别:
Continuous and Longitudinal Monitoring of Cerebral Blood Flow and Metabolism in Freely Moving Rodents
自由移动啮齿动物脑血流和代谢的连续和纵向监测
- 批准号:
10204279 - 财政年份:2020
- 资助金额:
$ 43.13万 - 项目类别:
相似国自然基金
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于机器学习和贝叶斯优化算法的药物结晶溶剂设计方法
- 批准号:22308228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超图的装填与覆盖问题的多项式时间可解性及近似算法设计研究
- 批准号:12361065
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
分布式机器学习算法设计与理论分析
- 批准号:62376008
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
医用电子直线加速器设计模型中非线性特征值问题的算法及相关预处理研究
- 批准号:12371379
- 批准年份:2023
- 资助金额:44 万元
- 项目类别:面上项目
相似海外基金
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
- 批准号:
10648372 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
A multi-modal approach for efficient, point-of-care screening of hypertrophic cardiomyopathy
一种高效、即时筛查肥厚型心肌病的多模式方法
- 批准号:
10749588 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
Intraoperative Identification of Cranial Nerves in Skull Base Surgery Using Polarization Sensitive Optical Coherence Tomography
使用偏振敏感光学相干断层扫描术中识别颅底手术中的脑神经
- 批准号:
10662675 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别:
Investigating Causal Relationships of Diabetes and Obesity on Degenerative Rotator Cuff Tear
研究糖尿病和肥胖与退行性肩袖撕裂的因果关系
- 批准号:
10676555 - 财政年份:2023
- 资助金额:
$ 43.13万 - 项目类别: