Prostate cancer risk stratification via computational 3D pathology

通过计算 3D 病理学进行前列腺癌风险分层

基本信息

  • 批准号:
    10459767
  • 负责人:
  • 金额:
    $ 62.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Summary. Prostate cancer (PCa) treatment management is currently heavily reliant upon slide-based histology of prostate biopsies and surgical specimens (prostatectomies). In particular, Gleason grading of histology sections provides a basis for stratifying patients for clinical management, and can result in dramatically different treatment paths. However, prognostication via Gleason grading suffers from several shortcomings, including subjective visual interpretation of complex 3D glandular morphologies based on 2D images, and analysis of a limited amount of tissue (~1% of the biopsy). These shortcomings contribute to poor inter-observer concordance amongst pathologists and poor stratification of patients with indolent vs. lethal disease. For the clinical management of PCa, two major challenges faced by urologists and oncologists, respectively, are: (1) correctly identifying men with low-risk PCa for active surveillance and (2) identifying men who are likely to have disease recurrence and metastasis after curative therapy (surgery or radiation), and hence would benefit from adjuvant therapy. With our open-top light-sheet (OTLS) microscope technologies, our team at the University of Washington (Liu group) has demonstrated the technical feasibility of achieving high-throughput slide-free 3D histology of biopsy and surgical specimens in a nondestructive and reversible manner that does not interfere with current histology methods. Potential benefits over traditional pathology include: (1) comprehensive imaging of specimens (biopsies and surgical bread loafs) rather than sparse sampling of thin sections on glass slides; (2) volumetric imaging of 3D structures that are prognostic; and (3) non-destructive imaging, which allows valuable biopsy specimens to be used for downstream assays. Our team at Case Western Reserve University (Madabhushi group) has also developed computational pathology classifiers, based on intuitive and interpretable “hand-crafted features,” for characterization of PCa aggressiveness based on 2D whole-slide imaging (WSI). In this R01 project, we seek to combine nondestructive 3D pathology with 3D computational pathology approaches to develop a novel prognostic assay, Prostate cancer Image Risk Score via 3D pathology (ProsIRiS3D), for discriminating between indolent and aggressive PCa. In Aim 1, we will develop the core technologies (hardware and software) for ProsIRiS3D. In particular, the goal of Aim 1a is to develop a “4th-generation” OTLS microscopy system capable of achieving sub-nuclear-resolution to explore the added prognostic benefit provided by such high-resolution features. In Aim 1b, computational imaging tools will be developed for extraction of novel 3D quantitative histomorphometric features for PCa prognostication. Our clinical validation studies will show that ProsIRiS3D is superior to analogous 2D approaches for urologists (Aim 2), to determine which newly biopsied patients should be placed on active surveillance vs. curative therapy, as well as for oncologists (Aim 3), to determine which prostatectomy patients have aggressive disease that may warrant adjuvant therapies.
总结:前列腺癌 (PCa) 治疗管理目前严重依赖于基于载玻片的治疗。 前列腺活检和手术标本(前列腺切除术)的组织学,特别是格里森分级。 组织学切片为临床管理的患者分层提供了基础,并可显着改善患者的预后。 然而,通过格里森分级进行预测有几个缺点, 包括基于 2D 图像对复杂 3D 腺体形态的主观视觉解释,以及 分析有限数量的组织(约 1% 的活检),这些缺点导致观察者间的观察结果不佳。 病理学家之间的一致性以及惰性与致命疾病患者的不良分层。 PCa的临床管理,泌尿科医师和肿瘤科医师分别面临的两大挑战是:(1) 正确识别患有低风险前列腺癌的男性进行主动监测,以及 (2) 识别可能患有前列腺癌的男性 治愈性治疗(手术或放射)后疾病复发和转移,因此将受益于 借助我们的开顶光片 (OTLS) 显微镜技术,我们大学的团队 华盛顿(刘组)论证了实现高通量无载玻片3D的技术可行性 以不干扰的非破坏性和可逆方式对活检和手术标本进行组织学检查 与传统病理学相比,当前的组织学方法的潜在优势包括:(1)综合成像。 标本(活组织检查和外科面包),而不是载玻片上的薄切片的稀疏采样; (2) 具有预测意义的 3D 结构体积成像;以及 (3) 无损成像,它允许 有价值的活检标本可用于下游分析。 (Madabhushi 小组)还开发了基于直观和可解释的计算病理学分类器 “手工制作的特征”,用于基于 2D 全切片成像 (WSI) 表征 PCa 侵袭性。 在这个 R01 项目中,我们寻求将无损 3D 病理学与 3D 计算病理学方法相结合 开发一种新的预后测定方法,通过 3D 病理学进行前列腺癌图像风险评分 (ProsIRiS3D),用于 区分惰性和攻击性 PCa 在目标 1 中,我们将开发核心技术(硬件)。 特别是,Aim 1a 的目标是开发“第四代”OTLS 显微镜。 能够实现亚核分辨率的系统,以探索此类技术提供的额外预后益处 在目标 1b 中,将开发计算成像工具来提取新颖的 3D 特征。 我们的临床验证研究将表明 PCa 预测的定量组织形态学特征。 对于泌尿科医生来说,ProsIRiS3D 优于类似的 2D 方法(目标 2),可以确定哪些新活检 与治疗相比,患者以及肿瘤科医生应接受主动监测(目标 3),以 确定哪些前列腺切除术患者患有可能需要辅助治疗的侵袭性疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan T.C. Liu其他文献

Trends and Challenges for the Clinical Adoption of Fluorescence-Trends and Challenges for the Clinical Adoption of Fluorescence-Guided Surgery Guided Surgery
荧光引导手术临床采用的趋势和挑战-荧光引导手术临床采用的趋势和挑战 引导手术
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan T.C. Liu;Nader Sanai
  • 通讯作者:
    Nader Sanai

Jonathan T.C. Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan T.C. Liu', 18)}}的其他基金

Prostate cancer risk stratification via computational 3D pathology
通过计算 3D 病理学进行前列腺癌风险分层
  • 批准号:
    10647788
  • 财政年份:
    2022
  • 资助金额:
    $ 62.44万
  • 项目类别:
Instrumentation platform for 3D pathology with open-top light-sheet microscopy
具有开顶光片显微镜的 3D 病理学仪器平台
  • 批准号:
    10434718
  • 财政年份:
    2021
  • 资助金额:
    $ 62.44万
  • 项目类别:
Instrumentation platform for 3D pathology with open-top light-sheet microscopy
具有开顶光片显微镜的 3D 病理学仪器平台
  • 批准号:
    10178401
  • 财政年份:
    2021
  • 资助金额:
    $ 62.44万
  • 项目类别:
Instrumentation platform for 3D pathology with open-top light-sheet microscopy
具有开顶光片显微镜的 3D 病理学仪器平台
  • 批准号:
    10630094
  • 财政年份:
    2021
  • 资助金额:
    $ 62.44万
  • 项目类别:
In vivo dual-axis confocal microscopy of 5-ALA-induced PpIX to guide low-grade glioma resections
5-ALA 诱导的 PpIX 体内双轴共聚焦显微镜指导低级别胶质瘤切除
  • 批准号:
    10407972
  • 财政年份:
    2020
  • 资助金额:
    $ 62.44万
  • 项目类别:
In vivo dual-axis confocal microscopy of 5-ALA-induced PpIX to guide low-grade glioma resections
5-ALA 诱导的 PpIX 体内双轴共聚焦显微镜指导低级别胶质瘤切除
  • 批准号:
    10684738
  • 财政年份:
    2020
  • 资助金额:
    $ 62.44万
  • 项目类别:
Intraoperative confocal microscopy for quantitative delineation of low-grade glio
术中共聚焦显微镜定量描绘低级别胶质细胞
  • 批准号:
    9118107
  • 财政年份:
    2014
  • 资助金额:
    $ 62.44万
  • 项目类别:
Intraoperative confocal microscopy for quantitative delineation of low-grade glio
术中共聚焦显微镜定量描绘低级别胶质细胞
  • 批准号:
    8696044
  • 财政年份:
    2014
  • 资助金额:
    $ 62.44万
  • 项目类别:
Intraoperative confocal microscopy for quantitative delineation of low-grade glio
术中共聚焦显微镜定量描绘低级别胶质细胞
  • 批准号:
    8890436
  • 财政年份:
    2014
  • 资助金额:
    $ 62.44万
  • 项目类别:
Endoscopic molecular imaging of esophageal cancer with multiplexed Raman nanopart
使用多重拉曼纳米部件对食管癌进行内窥镜分子成像
  • 批准号:
    8283324
  • 财政年份:
    2013
  • 资助金额:
    $ 62.44万
  • 项目类别:

相似国自然基金

弹性超声预测免疫调节型三阴性乳腺癌新辅助化疗联合免疫治疗的机制研究
  • 批准号:
    82371978
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
  • 批准号:
    82302153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
纳米硒调节线粒体自噬促感觉神经分泌参与牙周辅助加速成骨正畸治疗骨增量的机制研究
  • 批准号:
    82370995
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于深度学习联合多时序多参数MRI智能量化乳腺癌新辅助治疗后残余肿瘤术后复发风险的研究
  • 批准号:
    82302134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
食管癌新辅助治疗中靶向化疗耐药改善免疫治疗抵抗的机制发现和功能解析
  • 批准号:
    82320108016
  • 批准年份:
    2023
  • 资助金额:
    210 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Label-Free Optical Redox Imaging for Pretreatment Prognosis of Early-Stage Triple Negative Breast Cancer
无标记光学氧化还原成像用于早期三阴性乳腺癌的预处理预后
  • 批准号:
    10803898
  • 财政年份:
    2023
  • 资助金额:
    $ 62.44万
  • 项目类别:
Prostate cancer risk stratification via computational 3D pathology
通过计算 3D 病理学进行前列腺癌风险分层
  • 批准号:
    10647788
  • 财政年份:
    2022
  • 资助金额:
    $ 62.44万
  • 项目类别:
Epigenetic regulators of subtype plasticity in bladder cancer
膀胱癌亚型可塑性的表观遗传调节因子
  • 批准号:
    10377351
  • 财政年份:
    2021
  • 资助金额:
    $ 62.44万
  • 项目类别:
Development of a 3D Imaging Diagnostic Tool for the Improved Characterization of Metastatic Melanoma
开发 3D 成像诊断工具以改善转移性黑色素瘤的表征
  • 批准号:
    10400201
  • 财政年份:
    2021
  • 资助金额:
    $ 62.44万
  • 项目类别:
Development of a 3D Imaging Diagnostic Tool for the Improved Characterization of Metastatic Melanoma
开发 3D 成像诊断工具以改善转移性黑色素瘤的表征
  • 批准号:
    10241692
  • 财政年份:
    2021
  • 资助金额:
    $ 62.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了