Prostate cancer risk stratification via computational 3D pathology
通过计算 3D 病理学进行前列腺癌风险分层
基本信息
- 批准号:10647788
- 负责人:
- 金额:$ 60.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdjuvant TherapyArchivesBiochemicalBiological AssayBiopsyBiopsy SpecimenBreadCategoriesClassificationClinicClinicalClinical ManagementComplexComputer softwareComputing MethodologiesDataData SetDevelopmentDiagnosticDiseaseExcisionGene Expression ProfilingGenerationsGenitourinary systemGlassGleason Grade for Prostate CancerGoalsGuidelinesHistologyHistopathologyImageImaging DeviceIndolentIntuitionLightLocalized DiseaseMagnetic Resonance ImagingMalignant neoplasm of prostateMethodsMicroscopeMicroscopicMicroscopyMicrotomyModelingMolecularMorphologyNational Comprehensive Cancer NetworkNeoplasm MetastasisNomogramsNuclearOncologistOncologyOperative Surgical ProceduresOpticsOutcomePathologistPathologyPatientsPennsylvaniaPerformancePhenotypePrognostic MarkerProstateProstate Cancer therapyProstatectomyPublic HealthRadiationRadical ProstatectomyRecurrenceRecurrent diseaseResolutionRiskRisk AssessmentSamplingSerinusSlideSpecimenStructureSystemTechnologyThree-dimensional analysisTissue SampleTissuesTrainingUniversitiesUrologistValidationVisualWashingtoncancer imagingcellular imagingclinical riskcurative treatmentsfeature extractionimprovedinnovationinstrumentationmennovelpatient stratificationpredictive markerpreservationprognosticprognostic assaysprognostic valueprognosticationprostate biopsyprostate cancer riskprostate surgeryprototyperisk stratificationsuccesssurgical risksurveillance imagingthree dimensional structuretoolvalidation studieswhole slide imaging
项目摘要
Summary. Prostate cancer (PCa) treatment management is currently heavily reliant upon slide-based
histology of prostate biopsies and surgical specimens (prostatectomies). In particular, Gleason grading of
histology sections provides a basis for stratifying patients for clinical management, and can result in dramatically
different treatment paths. However, prognostication via Gleason grading suffers from several shortcomings,
including subjective visual interpretation of complex 3D glandular morphologies based on 2D images, and
analysis of a limited amount of tissue (~1% of the biopsy). These shortcomings contribute to poor inter-observer
concordance amongst pathologists and poor stratification of patients with indolent vs. lethal disease. For the
clinical management of PCa, two major challenges faced by urologists and oncologists, respectively, are: (1)
correctly identifying men with low-risk PCa for active surveillance and (2) identifying men who are likely to have
disease recurrence and metastasis after curative therapy (surgery or radiation), and hence would benefit from
adjuvant therapy. With our open-top light-sheet (OTLS) microscope technologies, our team at the University of
Washington (Liu group) has demonstrated the technical feasibility of achieving high-throughput slide-free 3D
histology of biopsy and surgical specimens in a nondestructive and reversible manner that does not interfere
with current histology methods. Potential benefits over traditional pathology include: (1) comprehensive imaging
of specimens (biopsies and surgical bread loafs) rather than sparse sampling of thin sections on glass slides;
(2) volumetric imaging of 3D structures that are prognostic; and (3) non-destructive imaging, which allows
valuable biopsy specimens to be used for downstream assays. Our team at Case Western Reserve University
(Madabhushi group) has also developed computational pathology classifiers, based on intuitive and interpretable
“hand-crafted features,” for characterization of PCa aggressiveness based on 2D whole-slide imaging (WSI). In
this R01 project, we seek to combine nondestructive 3D pathology with 3D computational pathology approaches
to develop a novel prognostic assay, Prostate cancer Image Risk Score via 3D pathology (ProsIRiS3D), for
discriminating between indolent and aggressive PCa. In Aim 1, we will develop the core technologies (hardware
and software) for ProsIRiS3D. In particular, the goal of Aim 1a is to develop a “4th-generation” OTLS microscopy
system capable of achieving sub-nuclear-resolution to explore the added prognostic benefit provided by such
high-resolution features. In Aim 1b, computational imaging tools will be developed for extraction of novel 3D
quantitative histomorphometric features for PCa prognostication. Our clinical validation studies will show that
ProsIRiS3D is superior to analogous 2D approaches for urologists (Aim 2), to determine which newly biopsied
patients should be placed on active surveillance vs. curative therapy, as well as for oncologists (Aim 3), to
determine which prostatectomy patients have aggressive disease that may warrant adjuvant therapies.
概括。前列腺癌(PCA)治疗管理目前非常依赖基于幻灯片的
前列腺活检和手术标本(前列腺切除术)的组织学。特别是格里森等级
组织学部分为对临床管理进行分层的基础提供了基础,并可能导致急剧
不同的治疗路径。但是,通过格里森(Gleason)等级提示有几个缺点,
包括基于2D图像的复杂3D腺形态的主观视觉解释,以及
分析有限量的组织(约1%的活检)。这些缺点导致了不良观察者
病理学家的一致性与致命疾病的患者分层不良。为了
PCA的临床管理,分别是泌尿科医生和肿瘤学家面临的两个主要挑战,是:(1)
正确识别患有低风险PCA的男性进行主动监视,(2)确定可能有
治疗治疗后的疾病复发和转移(手术或放射线),因此将受益于
辅助治疗。借助我们的开放式灯罩(OTLS)显微镜技术,我们的团队在大学
华盛顿(刘集团)证明了实现高通量幻灯片3D的技术可行性
活检和手术标本的组织学以不破坏和可逆的方式不干扰
使用当前的组织学方法。对传统病理学的潜在好处包括:(1)全面成像
标本(活检和手术面包面包),而不是对载玻片上的薄部分的稀疏采样;
(2)预后的3D结构的体积成像; (3)非破坏性成像,这允许
可用于下游测定的有价值的活检标本。我们的凯斯西部储备大学的团队
(Madabhushi Group)还基于直观且可解释的开发了计算病理分类器
“手工制作的功能”,用于基于2D全扫描成像(WSI)的PCA侵略性表征。在
这个R01项目,我们试图将非破坏性3D病理与3D计算病理学方法相结合
为了开发一种新颖的预后测定,前列腺癌图像风险评分通过3D病理(Prosiris3d),用于
区分懒惰和侵略性PCA。在AIM 1中,我们将开发核心技术(硬件
和软件)prosiris3d。特别是,目标1a的目的是开发“第四代” OTLS显微镜
能够实现亚核分辨率的系统,以探索此类提供的额外预后益处
高分辨率功能。在AIM 1B中,将开发计算成像工具来提取新颖的3D
PCA预后的定量组织形态计量学特征。我们的临床验证研究将表明
prosiris3d优于泌尿科医生的类似2D方法(AIM 2),以确定哪些新生活检
应将患者进行主动监测与治疗疗法以及肿瘤学家(AIM 3)
确定哪些前列腺切除术患者患有侵袭性疾病,可能需要调整疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan T.C. Liu其他文献
Trends and Challenges for the Clinical Adoption of Fluorescence-Trends and Challenges for the Clinical Adoption of Fluorescence-Guided Surgery Guided Surgery
荧光引导手术临床采用的趋势和挑战-荧光引导手术临床采用的趋势和挑战 引导手术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jonathan T.C. Liu;Nader Sanai - 通讯作者:
Nader Sanai
Jonathan T.C. Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan T.C. Liu', 18)}}的其他基金
Prostate cancer risk stratification via computational 3D pathology
通过计算 3D 病理学进行前列腺癌风险分层
- 批准号:
10459767 - 财政年份:2022
- 资助金额:
$ 60.92万 - 项目类别:
Instrumentation platform for 3D pathology with open-top light-sheet microscopy
具有开顶光片显微镜的 3D 病理学仪器平台
- 批准号:
10434718 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别:
Instrumentation platform for 3D pathology with open-top light-sheet microscopy
具有开顶光片显微镜的 3D 病理学仪器平台
- 批准号:
10178401 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别:
Instrumentation platform for 3D pathology with open-top light-sheet microscopy
具有开顶光片显微镜的 3D 病理学仪器平台
- 批准号:
10630094 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别:
In vivo dual-axis confocal microscopy of 5-ALA-induced PpIX to guide low-grade glioma resections
5-ALA 诱导的 PpIX 体内双轴共聚焦显微镜指导低级别胶质瘤切除
- 批准号:
10407972 - 财政年份:2020
- 资助金额:
$ 60.92万 - 项目类别:
In vivo dual-axis confocal microscopy of 5-ALA-induced PpIX to guide low-grade glioma resections
5-ALA 诱导的 PpIX 体内双轴共聚焦显微镜指导低级别胶质瘤切除
- 批准号:
10684738 - 财政年份:2020
- 资助金额:
$ 60.92万 - 项目类别:
Intraoperative confocal microscopy for quantitative delineation of low-grade glio
术中共聚焦显微镜定量描绘低级别胶质细胞
- 批准号:
9118107 - 财政年份:2014
- 资助金额:
$ 60.92万 - 项目类别:
Intraoperative confocal microscopy for quantitative delineation of low-grade glio
术中共聚焦显微镜定量描绘低级别胶质细胞
- 批准号:
8696044 - 财政年份:2014
- 资助金额:
$ 60.92万 - 项目类别:
Intraoperative confocal microscopy for quantitative delineation of low-grade glio
术中共聚焦显微镜定量描绘低级别胶质细胞
- 批准号:
8890436 - 财政年份:2014
- 资助金额:
$ 60.92万 - 项目类别:
Endoscopic molecular imaging of esophageal cancer with multiplexed Raman nanopart
使用多重拉曼纳米部件对食管癌进行内窥镜分子成像
- 批准号:
8283324 - 财政年份:2013
- 资助金额:
$ 60.92万 - 项目类别:
相似国自然基金
基于磁共振APT成像的乳腺癌新辅助治疗敏感性预测研究
- 批准号:82302153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机器学习辅助按需设计多酶活性纳米酶用于糖尿病足溃疡治疗研究
- 批准号:32371465
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多时序CT影像与病理WSI的非小细胞肺癌新辅助免疫治疗疗效预测研究
- 批准号:82360356
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于深度学习和肿瘤-免疫-间质生物模型的肿瘤药物联合治疗疗效预测和辅助决策研究
- 批准号:72374119
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
类病毒结构纳米载体辅助A型肉毒毒素膀胱内递送治疗膀胱过度活动症的设计和应用研究
- 批准号:82300874
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Label-Free Optical Redox Imaging for Pretreatment Prognosis of Early-Stage Triple Negative Breast Cancer
无标记光学氧化还原成像用于早期三阴性乳腺癌的预处理预后
- 批准号:
10803898 - 财政年份:2023
- 资助金额:
$ 60.92万 - 项目类别:
Prostate cancer risk stratification via computational 3D pathology
通过计算 3D 病理学进行前列腺癌风险分层
- 批准号:
10459767 - 财政年份:2022
- 资助金额:
$ 60.92万 - 项目类别:
Epigenetic regulators of subtype plasticity in bladder cancer
膀胱癌亚型可塑性的表观遗传调节因子
- 批准号:
10377351 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别:
Development of a 3D Imaging Diagnostic Tool for the Improved Characterization of Metastatic Melanoma
开发 3D 成像诊断工具以改善转移性黑色素瘤的表征
- 批准号:
10400201 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别:
Development of a 3D Imaging Diagnostic Tool for the Improved Characterization of Metastatic Melanoma
开发 3D 成像诊断工具以改善转移性黑色素瘤的表征
- 批准号:
10241692 - 财政年份:2021
- 资助金额:
$ 60.92万 - 项目类别: