Health Information Technology to Support Autism Spectrum Disorders (ASD) Risk Assessment for Early Diagnosis
健康信息技术支持自闭症谱系障碍 (ASD) 风险评估及早期诊断
基本信息
- 批准号:10458014
- 负责人:
- 金额:$ 31.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:8 year oldAddressAffectAgeAlgorithmsAutism DiagnosisAwarenessBehaviorBehavioralBeliefCaringCenters for Disease Control and Prevention (U.S.)ChildClassificationClinicClinicalDSM-IVDataDecision MakingDevelopmentDevelopmental DisabilitiesDiagnosisDiagnostic and Statistical Manual of Mental DisordersEarly DiagnosisEarly InterventionEarly identificationEarly treatmentElectronic Health RecordEvaluationGoalsHospitalsHumanIndividualIntuitionLabelMachine LearningMedicalMedical EducationModelingMonitorNatural Language ProcessingNeurobiologyOutcomePatternPerformancePhysiciansPrevalenceProductivityRecordsResourcesRiskRisk AssessmentSpecialistStructureTechniquesTestingTextTrainingUpdateUse of New TechniquesVocabularyWorkadult with autism spectrum disorderalgorithmic biasautism spectrum disorderbasebehavioral phenotypingblinddeep learningdevelopmental diseasediagnostic algorithmdiagnostic criteriadisorder riskeconomic costelectronic structureexperiencehealth information technologyhigh riskhuman-in-the-loopimprovedimproved outcomelarge datasetsmachine learning algorithmmachine learning modelprototyperandomized trialsocialstructured datatoolunstructured data
项目摘要
Project Summary / Abstract
Autism spectrum disorder (ASD) is a developmental disorder that affects 1 in 54 children in the US (1). The
economic cost of ASD is estimated to be $66 billion per year in the US, from medical care and lost parental
productivity (2). Early diagnosis is crucial since it allows for early treatment and the best long-term outcome.
However, identifying children at high risk for ASD at an early age is challenging due to lack of specialists. To
address this problem, the project's objective is to create health information technology (HIT) using information
in electronic health records (EHR) to support non-expert clinicians in identifying children at high risk for ASD.
The HIT will integrate two components that provide complementary information. The first component will
leverage machine learning algorithms to label EHR of children at high risk for autism. Both traditional and deep
learning, potentially leveraging each other, will be evaluated while systematically tracking quality and quantity
of information in EHR and their effect on performance. The second component will focus on the EHR free text
and identify phenotypic behavioral expressions of diagnostic criteria as defined in the Diagnostic and Statistical
Manual of Mental Disorders (DSM). Rule-based natural language processing will be combined with machine
learning algorithms. For both components, potential algorithm bias will be investigated and corrected or
documented when this is not possible. The HIT will combine results from both components through an intuitive
user interface. Since it is intended to be used as a human-in-the loop decision tool, it will also provide
descriptive data on performance for both components. The final HIT will be developed using rapid prototyping
in interaction with domain experts. It will be evaluated in a user study with representative non-expert clinicians.
The evaluation will compare accuracy, confidence, and efficiency of identifying children at risk for ASD with
and without the HIT by non-ASD experts. It will also systematically focus on the type, amount, quality and
transparency of information provided, and how this interacts with user beliefs about their own expertise as well
as their bias toward machine decisions. Different types of EHR as well as different levels of clinical expertise
will be compared for effects of HIT use.
Preliminary work has been conducted for all components with good results. However, this prior work focused
on version IV of the DSM and used only free text from data rich EHR. The proposed project will expand the
prior work to use DSM-5 criteria, train and develop the algorithms to use structured and unstructured fields in
clinical, representative EHR, and work with EHR from different hospitals to evaluate potential obstacles and
advantages of variability in data.
Using information in EHR, this HIT will provide support especially for non-expert clinicians in their evaluation of
children who may be at risk of ASD. The HIT will support early referrals leading to early diagnosis and therapy.
It will be useful in a variety of different settings where domain expertise is missing.
项目摘要 /摘要
自闭症谱系障碍(ASD)是一种发育障碍,影响美国54名儿童中有1个(1)。这
在美国,ASD的经济成本估计每年为每年660亿美元
生产力(2)。早期诊断至关重要,因为它允许早期治疗和最佳的长期结局。
但是,由于缺乏专家,确定在早期ASD高风险的儿童是具有挑战性的。到
解决这个问题,该项目的目标是使用信息创建健康信息技术(HIT)
在电子健康记录(EHR)中支持非专业临床医生确定ASD高风险的儿童。
HIT将集成两个提供互补信息的组件。第一个组件将
利用机器学习算法将儿童的EHR标记为自闭症的高风险。传统和深
在系统地跟踪质量和数量的同时,将评估学习,可能相互利用的学习
EHR中的信息及其对性能的影响。第二个组件将重点放在EHR免费文本上
并确定诊断和统计中定义的诊断标准的表型行为表达
精神障碍手册(DSM)。基于规则的自然语言处理将与机器结合
学习算法。对于这两个组件,将研究和纠正潜在算法偏差或
记录在不可能的情况下。命中将通过直觉结合两个组件的结果
用户界面。由于它旨在用作循环决策工具,因此也将提供
有关两个组件性能的描述性数据。最终的命中将使用快速原型开发
与领域专家的互动。它将在用户研究中与代表性的非专业临床医生进行评估。
评估将比较确定ASD风险的儿童的准确性,信心和效率
而且没有非ASD专家的命中。它还将系统地关注类型,数量,质量和
提供的信息的透明度,以及如何与用户对自己专业知识的信念相互作用
作为他们对机器决策的偏见。不同类型的EHR以及不同水平的临床专业知识
将比较HIT使用的效果。
已经针对所有成分进行了良好结果的初步工作。但是,这项先前的工作集中
在DSM的IV版本上,仅使用来自Data Rich EHR的免费文本。拟议的项目将扩大
使用DSM-5标准的事先工作,训练和开发算法,以使用结构化和非结构化字段
临床,代表EHR,并与来自不同医院的EHR合作,以评估潜在的障碍和
数据可变性的优势。
使用EHR中的信息,此命中将为非专家临床医生提供支持
可能有ASD风险的孩子。命中将支持早期推荐,导致早期诊断和治疗。
它在缺少域专业知识的各种不同的环境中很有用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GONDY LEROY其他文献
GONDY LEROY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GONDY LEROY', 18)}}的其他基金
Health Information Technology to Support Autism Spectrum Disorders (ASD) Risk Assessment for Early Diagnosis
健康信息技术支持自闭症谱系障碍 (ASD) 风险评估及早期诊断
- 批准号:
10297910 - 财政年份:2021
- 资助金额:
$ 31.65万 - 项目类别:
Health Information Technology to Support Autism Spectrum Disorders (ASD) Risk Assessment for Early Diagnosis
健康信息技术支持自闭症谱系障碍 (ASD) 风险评估及早期诊断
- 批准号:
10609515 - 财政年份:2021
- 资助金额:
$ 31.65万 - 项目类别:
Audio Generation and Optimization from Existing Resources for Patient Education
利用现有资源生成和优化患者教育音频
- 批准号:
10439893 - 财政年份:2015
- 资助金额:
$ 31.65万 - 项目类别:
Audio Generation and Optimization from Existing Resources for Patient Education
利用现有资源生成和优化患者教育音频
- 批准号:
10295641 - 财政年份:2015
- 资助金额:
$ 31.65万 - 项目类别:
Audio Generation and Optimization from Existing Resources for Patient Education
利用现有资源生成和优化患者教育音频
- 批准号:
10580849 - 财政年份:2015
- 资助金额:
$ 31.65万 - 项目类别:
Large-scale evaluation of text features affecting perceived and actual text diffi
影响感知和实际文本差异的文本特征的大规模评估
- 批准号:
8240419 - 财政年份:2011
- 资助金额:
$ 31.65万 - 项目类别:
Large-scale evaluation of text features affecting perceived and actual text diffi
影响感知和实际文本差异的文本特征的大规模评估
- 批准号:
8714350 - 财政年份:2011
- 资助金额:
$ 31.65万 - 项目类别:
Large-scale evaluation of text features affecting perceived and actual text diffi
影响感知和实际文本差异的文本特征的大规模评估
- 批准号:
8018414 - 财政年份:2011
- 资助金额:
$ 31.65万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Disseminate data on cognitive functioning to investigate long run effects of exposure to natural disasters
传播认知功能数据,以调查遭受自然灾害的长期影响
- 批准号:
10742516 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Motor skill learning in young children born preterm
早产儿的运动技能学习
- 批准号:
10598213 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Poverty-Related Risk Factors for Auditory and Language Deficits in Children
儿童听觉和语言缺陷的贫困相关风险因素
- 批准号:
10815155 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Development of a Novel, Targeted Small Molecule Inhibitor of the Nucleoside Salvage Pathway to Treat Acute Disseminated Encephalomyelitis (ADEM)
开发一种新型核苷挽救途径靶向小分子抑制剂来治疗急性播散性脑脊髓炎 (ADEM)
- 批准号:
10755864 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别:
Developmental Origins of Cardiovascular Disease in Offspring from Non-Human Primate Pregnancies at Advanced Maternal Age
高龄非人类灵长类动物妊娠后代心血管疾病的发育起源
- 批准号:
10629732 - 财政年份:2023
- 资助金额:
$ 31.65万 - 项目类别: