WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
基本信息
- 批准号:10454298
- 负责人:
- 金额:$ 63.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:BioinformaticsCancer Research ProjectCloud ComputingCommunitiesComplexComputer LiteracyComputing MethodologiesDataData AnalysesData SetData Storage and RetrievalDevelopmentDocumentationDropsEducational workshopEncyclopedia of DNA ElementsEnsureFundingGene Expression ProfilingGenesGenomeGenotype-Tissue Expression ProjectGoalsInformaticsInfrastructureInternationalIntuitionJavaLibrariesLinkMalignant NeoplasmsMapsMethodsModernizationMultiomic DataNetwork-basedPathway interactionsPersonal ComputersPhysiciansPilot ProjectsPrivatizationProteinsPublic DomainsReproducibilityResearchResearch PersonnelResearch SubjectsScientistSoftware ToolsStatistical MethodsStressSystemSystems BiologyTechnologyTestingThe Cancer Genome AtlasTrainingVisualWorkanalytical methodanticancer researchbasecancer genomicscloud basedcloud platformcomputing resourcesdata toolsdata visualizationdifferential expressiongene networkgene regulatory networkgenomic datagenomic toolsgenomics cloudgraphical user interfacehigh dimensionalityimprovedlarge datasetsmeetingsnetwork modelsnext generation sequence datanovel sequencing technologyonline tutorialopen sourceprogramsstatisticssuccesstooltranscriptometranscriptome sequencingweb appweb-enabled
项目摘要
Project Summary/Abstract:
Improvements in sequencing technology have allowed genome and transcriptome profiling of large groups
of research subjects. Projects such as The Cancer Genome Atlas (TCGA), the Encyclopedia of DNA Elements
(ENCODE), the Genotype-Tissue Expression Project (GTEx), and other have placed large, complex, multi-
omic data into the public domain. While these large projects and the use of new sequencing technologies has
made an unprecedented quantity of data available, technical challenges such as moving and analyzing large
multi-omic data sets, and the lack of intuitive and easy to use tools for data analysis, have limited broad
exploration of the available data, often separating experimental biologists and domain experts from directly
exploring relationships within the data.
More than 15 years ago, we began development of MeV, a freely-available, open source software tool for
intuitive analysis of genomic data. The simple graphical user interface and the extensive library of state-of-the-
art analytical methods made MeV one of the most widely used software tools in bioinformatics, with nearly
260,000 downloads since we began keeping statistics in 2008 and downloads of nearly 30,000 per year for the
past few years. Despite the success of MeV and its continued use, we recognized that large-scale, multi-omic
data sets can no longer be analyzed easily using a desktop application. To keep pace with the data, we
needed to develop a new platform that draws on modern computing technologies, including cloud-based
computing and scalable data storage.
The solution, funded by the NCI through the ITCR program (5U01CA151118), is a cloud-based, web-
enabled version of MeV (WebMeV; http://mev.tm4.org). WebMeV uses Google Cloud Platform (GCP) and its
Compute Engine infrastructure to leverage cloud-computing resources for analyzing large public genomic data
sets. In April 2016, we released a robust version of WebMeV and have seen use of the system grow
dramatically. The system has already been used to perform more than 350,000 analyses; WebMeV currently
performing more than 100 analyses per day, 3,735 users who have registered with the system and that group
is growing by 400 per month (registration is not required). To ensure wide use, we have done numerous online
tutorials, including two “sold out” tutorials for intramural investigators at the NCI where WebMeV has become a
critical tool for genomic analysis. In this application, we propose to continue to maintain and improve WebMeV,
to expand its capabilities by implementing methods for network inference and representation, to integrate with
the Cancer Genomics Cloud Pilots program, and to implement methods that can advance reproducible
research.
项目摘要/摘要:
测序技术的改进允许大型基因组和转录组分析
研究对象。
(编码),基因型 - 组织表达项目(GTEX),其他已经放置了大型,复杂,多的
大型项目和使用新测序技术的数据
提出了空前的数据可用数据,诸如移动和分析大型的技术挑战
多摩尼克数据集以及缺乏直观且易于使用的数据分析工具,广泛的范围有限
探索可用数据,通常将实验生物学家和领域专家与直接分开
探索数据中的关系。
15年前,我们开始开发Mev,这是一种自由使用的开源软件TOOLE,for for For For For For For For For For For For For For For For For For For For For For For For For For For
基因组数据的直观分析。
艺术分析方法使MEV成为生物信息学中使用最广泛的软件工具之一
自从我们从2008年开始宣传宣传以来,下载260,000个
过去的几个耳朵。
可以使用桌面应用程序轻松地分析数据集。
需要开发一个利用现代计算技术的新平台,包括基于云的计算技术
计算和可扩展数据存储。
该解决方案由NCI ITCR计划(5U01CA151118)资助,是一个云 - 低音的Web-
启用版本的Mev(WebMev; http://mev.tm4.org)。
计算英语基础架构以利用云计算资源来分析大型公共基因组数据
集合。2016年4月,我们发布了强大的Webmev版本
当前,该系统已经进行了350,000多个分析
每天进行100多次分析,有3,735位HABE在系统注册的用户和该组
每月增长400个(不需要注册)。
教程,包括NCI Webmev的两个“售罄”教程,已成为一个
用于基因组分析的关键工具。
通过实施网络推理和压抑方法来扩展其功能,与
癌症基因组云飞行员计划,并实施可以推进可重现的方法
研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Quackenbush其他文献
John Quackenbush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Quackenbush', 18)}}的其他基金
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10676979 - 财政年份:2019
- 资助金额:
$ 63.29万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10251317 - 财政年份:2019
- 资助金额:
$ 63.29万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10001456 - 财政年份:2019
- 资助金额:
$ 63.29万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
9762881 - 财政年份:2018
- 资助金额:
$ 63.29万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10462799 - 财政年份:2018
- 资助金额:
$ 63.29万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10665644 - 财政年份:2018
- 资助金额:
$ 63.29万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10246935 - 财政年份:2018
- 资助金额:
$ 63.29万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9115368 - 财政年份:2016
- 资助金额:
$ 63.29万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9248431 - 财政年份:2016
- 资助金额:
$ 63.29万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9901569 - 财政年份:2016
- 资助金额:
$ 63.29万 - 项目类别:
相似海外基金
CYTOSCAPE: AN ECOSYSTEM FOR NETWORK GENOMICS
CYTOSCAPE:网络基因组学的生态系统
- 批准号:
10411738 - 财政年份:2022
- 资助金额:
$ 63.29万 - 项目类别:
Durable Common Fund Data Interfaces and Tutorials with Bioconductor
持久的共同基金数据接口和 Bioconductor 教程
- 批准号:
10356362 - 财政年份:2021
- 资助金额:
$ 63.29万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10676979 - 财政年份:2019
- 资助金额:
$ 63.29万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10251317 - 财政年份:2019
- 资助金额:
$ 63.29万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10001456 - 财政年份:2019
- 资助金额:
$ 63.29万 - 项目类别: