Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
基本信息
- 批准号:9901569
- 负责人:
- 金额:$ 29.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Unprecedented advances in digital technology during the second half of the 20th century have produced a revolution that is transforming science, including health and biomedical research, by providing data of unprecedented complexity in volumes and at a rate that was previously unimaginable. Members of National Research Council's (NRC's) Committee on Massive Data Analysis concluded in their 2013 "Frontiers of Massive Data Analysis" report that the challenges associated with "Big Data" go far beyond the technical aspects of data management and emphasized that development of rigorous quantitative and statistical methods was crucial if we are to use these data to their advantage. In
this application we describe an integrated program designed to provide students with training in the quantitative and computational skills and communication and interdisciplinary research skills-and their application-required for those students to become the next generation of leading Big Data scientists in health and biomedical research. At the Harvard TH Chan School of Public Health, we have made a substantial investment is addressing these challenges, including launching a new formal Master's Degree program in Computational Biology and Quantitative Genomics, revamping the curriculum in Biostatistics to include a greater emphasis on computational methods and Big Data, a proposal undergoing internal review to include computation as an area of core competency for our students, and the inclusion of Big Data analytics as a central focus of the School's ongoing capital campaign. We are requesting support for six pre-doctoral students who will emerge from the program with expertise in cutting-edge statistical and computational methods development, a thorough understanding of fundamental basic science, public health, and clinical science, and demonstrated skills in the application of those methods in a wide range of areas in health and biomedical research. Our students will participate in a program designed to provide them with interdisciplinary research experience, to train them to collaborate and communicate effectively, and to understand the importance of data provenance and reproducible research. The training program involves active participation by accomplished and experienced multidisciplinary faculty members, including biostatisticians, bioinformatics scientists and computational biologists, computer scientists, molecular biologists, public health researchers, and clinicians. It combines elements of training in coursework, lab rotations in biostatistics, computational biology, computer science, molecular biology, population science and clinical science. Students will participate in directed and independent methodological research, will be involved in broad-based collaborative research projects, and will have rich career development opportunities in a stimulating and nurturing interdisciplinary environment that will prepare them to be leaders in quantitative Big Data health science research.
描述(由申请人提供):20 世纪下半叶,数字技术取得了前所未有的进步,产生了一场革命,这场革命正在改变科学,包括健康和生物医学研究,提供的数据数量和速度前所未有。国家研究委员会 (NRC) 海量数据分析委员会的成员在其 2013 年《海量数据分析前沿》报告中得出结论,与“大数据”相关的挑战正在消失。远远超出了数据管理的技术方面,并强调如果我们要充分利用这些数据,那么开发严格的定量和统计方法至关重要。
我们在此应用程序中描述了一个综合计划,旨在为学生提供定量和计算技能以及沟通和跨学科研究技能及其应用方面的培训,使这些学生成为健康和生物医学研究领域的下一代领先大数据科学家。在哈佛大学陈曾熙公共卫生学院,我们投入了大量资金来应对这些挑战,包括启动计算生物学和定量基因组学的新正式硕士学位课程,修改生物统计学课程以更加重视计算方法和大数据,一项正在进行内部审查的提案,将计算作为我们学生的核心能力领域,并将大数据分析作为学校正在进行的资本活动的核心重点,我们正在请求对六个预科项目的支持。博士生将从该项目中脱颖而出,拥有尖端统计和计算方法开发方面的专业知识,对基础科学、公共卫生和临床科学有透彻的了解,并表现出在广泛领域应用这些方法的技能我们的学生将参加健康和生物医学研究项目。该培训计划旨在为他们提供跨学科研究经验,培训他们进行协作和有效沟通,并了解数据来源和可重复研究的重要性。它结合了生物统计学、计算生物学、计算机科学、分子生物学、人口科学和临床科学方面的课程和实验室轮换培训要素。独立的方法论研究,将参与基础广泛的合作研究项目,并将在刺激和培育的跨学科环境中拥有丰富的职业发展机会,这将使他们成为定量大数据健康科学研究的领导者。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating the cumulative incidence of COVID-19 in the United States using influenza surveillance, virologic testing, and mortality data: Four complementary approaches.
- DOI:10.1371/journal.pcbi.1008994
- 发表时间:2021-06
- 期刊:
- 影响因子:4.3
- 作者:Lu FS;Nguyen AT;Link NB;Molina M;Davis JT;Chinazzi M;Xiong X;Vespignani A;Lipsitch M;Santillana M
- 通讯作者:Santillana M
Syndromic surveillance using monthly aggregate health systems information data: methods with application to COVID-19 in Liberia.
- DOI:10.1093/ije/dyab094
- 发表时间:2021-08-30
- 期刊:
- 影响因子:7.7
- 作者:Fulcher IR;Boley EJ;Gopaluni A;Varney PF;Barnhart DA;Kulikowski N;Mugunga JC;Murray M;Law MR;Hedt-Gauthier B;Cross-site COVID-19 Syndromic Surveillance Working Group
- 通讯作者:Cross-site COVID-19 Syndromic Surveillance Working Group
Characterizing and Avoiding Problematic Global Optima of Variational Autoencoders.
- DOI:pii: https://proceedings.mlr.press/v118/yacoby20a.html
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yacoby Y;Pan W;Doshi-Velez F
- 通讯作者:Doshi-Velez F
Conditional cross-design synthesis estimators for generalizability in Medicaid.
用于医疗补助中通用性的条件交叉设计综合估计器。
- DOI:10.1111/biom.13863
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Degtiar,Irina;Layton,Tim;Wallace,Jacob;Rose,Sherri
- 通讯作者:Rose,Sherri
Can we predict the severe course of COVID-19 - a systematic review and meta-analysis of indicators of clinical outcome?
- DOI:10.1101/2020.11.09.20228858
- 发表时间:2020-11-12
- 期刊:
- 影响因子:0
- 作者:Katzenschlager, Stephan;Zimmer, Alexandra J;Denkinger, Claudia M
- 通讯作者:Denkinger, Claudia M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Quackenbush其他文献
John Quackenbush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Quackenbush', 18)}}的其他基金
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10676979 - 财政年份:2019
- 资助金额:
$ 29.28万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10251317 - 财政年份:2019
- 资助金额:
$ 29.28万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10454298 - 财政年份:2019
- 资助金额:
$ 29.28万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10001456 - 财政年份:2019
- 资助金额:
$ 29.28万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
9762881 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10462799 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10665644 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10246935 - 财政年份:2018
- 资助金额:
$ 29.28万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9115368 - 财政年份:2016
- 资助金额:
$ 29.28万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9248431 - 财政年份:2016
- 资助金额:
$ 29.28万 - 项目类别:
相似国自然基金
基于神经科学的社区环境对居民心理健康影响机制和规划调控研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
加强国家自然科学基金区域创新发展联合基金统筹管理策略研究—以人口健康领域为例
- 批准号:J2124094
- 批准年份:2021
- 资助金额:40 万元
- 项目类别:
大科学装置样品环境设备的服役贫信息对比学习健康监测研究
- 批准号:52175080
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
新冠疫情常态化下,科学和技术赋能社区老年家庭健康管理
- 批准号:72181240169
- 批准年份:2021
- 资助金额:1.85 万元
- 项目类别:国际(地区)合作与交流项目
基于实施科学整合框架的银屑病患者PSORIAS健康照护模式的构建与实证研究
- 批准号:72104044
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
- 批准号:
10714466 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别:
Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
- 批准号:
10554786 - 财政年份:2023
- 资助金额:
$ 29.28万 - 项目类别: