EEGLAB: Software for Analysis of Human Brain Dynamics
EEGLAB:人脑动力学分析软件
基本信息
- 批准号:10452690
- 负责人:
- 金额:$ 54.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptionAnatomyArchitectureAtlasesAutomatic Data ProcessingAutomationBayesian ModelingBehaviorBrainBrain imagingCaliforniaClassificationClinicalCodeCognitiveCollectionCommunitiesCommunity OutreachComplexComputer softwareDataData AnalysesData Storage and RetrievalDatabasesDevelopmentDiseaseDistributed DatabasesDocumentationEducational process of instructingEducational workshopElectroencephalographyElectromagneticsElectronic MailElectrophysiology (science)EnvironmentEventFunctional ImagingFunctional Magnetic Resonance ImagingHealthHumanImageInstitutesInternetJointsLaboratoriesLearningLinkLinks ListLocationMachine LearningMagnetic Resonance ImagingMagnetoencephalographyMaintenanceMeasuresMeta-AnalysisMetabolicMetadataMethodsModelingModernizationMorphologic artifactsNatureNeurosciencesNewsletterPaperPlug-inProcessPsyche structurePublishingReportingResearchResearch MethodologyResearch PersonnelResolutionRespondentRunningSourceStatistical Data InterpretationSurveysSystemTestingTimeTrainingUnited States National Institutes of HealthUniversitiesUpdateVisualization softwareWorkarchive dataarchived dataautomated analysisbasebrain researchcentral databasecognitive neurosciencecomputational neurosciencecostdata analysis pipelinedata archivedata cleaningdata infrastructuredata structuredata visualizationdesignexperiencegraphical user interfaceimaging modalityindependent component analysisinterestlight weightmachine learning methodmathematical methodsnewsnovel strategiesonline courseopen sourceresearch studyresponsesignal processingstatisticssupport toolsteaching laboratorytoolwiki
项目摘要
Electroencephalography (EEG), the first function brain activity imaging modality, has several natural advantages over
metabolic brain imaging modalities. EEG is noninvasive, low cost, and lightweight enough to be highly mobile. Two
major shifts in scientific perspective on the nature and use of human electrophysiological data are now ongoing. The first
is a shift to using EEG data as a source-resolved, relatively high-resolution cortical source imaging modality. The
EEGLAB signal processing environment, an open source software project of the Swartz Center for Computational
Neuroscience (SCCN) of the University of California, San Diego (UCSD), began as a set of EEG data analysis running on
Matlab (The Mathworks, Inc.) released by Makeig on the World Wide Web in 1997. EEGLAB was first released from
SCCN in 2001. Now nearly twenty years later, the EEGLAB reference paper [4] has over 6,750 citations (now increasing
by over 4 per day), the opt-in EEGLAB discussion email list links 6,000 researchers, the EEGLAB news list over 15,000
researchers, and an independent 2011 survey of 687 research respondents reported EEGLAB to be the software
environment most widely used for electrophysiological data analysis in cognitive neuroscience. Our statistics show that
after over the past four years, EEGLAB adoption is still growing steadily. Here, we will develop a framework for
thorough comparison of preprocessing methods, and will apply machine learning methods on the large body of data
collected by our laboratory to build optimized, automated data processing pipelines. We will greatly augment the power of
the EEGLAB environment by providing a cross-study meta-analysis capability and will revise the software architecture to
use a file and metadata organization compatible with the Brain Imaging Data Structure (BIDS) framework first developed
for fMRI/MRI data archiving. These tools will integrate the HED annotating system allowing for meta-analysis across
large corpus of studies. We will implement beamforming within EEGLAB. We will develop a hierarchical Bayesian
framework for clustering effective sources on multiple measures across subjects and studies, and will develop tools to
perform statistical testing on information flow measures at these scales. Although EEG and MEG recording have co-
existed for four decades, little available software can combine both data types, recorded concurrently (`MEEG' data), to
enhance source separation. We recently showed that ICA decomposition also allows joint MEEG effective source
decomposition and will integrate MEG and joint MEEG data decomposition and imaging into the EEGLAB tool set. We
will build tools to use MRI- and fMRI-derived anatomical atlases to inform the interpretation of EEG and MEG brain
source dynamics. These radical improvements will further the use of non-invasive human electrophysiology for 3-D
functional cortical brain imaging in the U.S. and worldwide, thereby accelerating progress in noninvasive basic and
clinical human brain research using highly time- and space-resolved measures of brain electromagnetic dynamics.
脑电图(EEG)是第一个功能大脑活动成像的功能,具有多种自然优势
代谢大脑成像方式。脑电图无创,低成本且轻巧,足够轻巧。二
科学观点对人类电生理数据的性质和使用的主要转变正在进行中。第一个
是使用脑电图数据作为源分辨,相对较高的皮质源成像模式的转变。这
EEGLAB信号处理环境,Swartz计算中心的开源软件项目
加利福尼亚大学圣地亚哥分校(UCSD)的神经科学(SCCN),始于一组脑电图数据分析
MATHIG于1997年在万维网上发布的Matlab(Mathworks,Inc。)。Eeglab首次发行
SCCN在2001年。现在将近二十年后,EEGLAB参考文件[4]有6,750多个引用(现在增加
每天超过4个),选择EEGLAB讨论电子邮件列表链接6,000名研究人员,EEGLAB新闻列表超过15,000
研究人员以及2011年对687位研究受访者的独立调查报告EEGLAB是该软件
在认知神经科学中,最广泛用于电生理数据分析的环境。我们的统计数据表明
在过去的四年中,EEGLAB的采用率仍在稳步增长。在这里,我们将为
对预处理方法的详尽比较,并将在大量数据上应用机器学习方法
由我们的实验室收集以建立优化的自动数据处理管道。我们将大大增强
EEGLAB环境通过提供跨研究的荟萃分析能力,并将软件体系结构修改为
使用与大脑成像数据结构(BID)框架兼容的文件和元数据组织首先开发
用于fMRI/MRI数据归档。这些工具将集成HED注释系统,允许跨越
大量研究。我们将在EEGLAB内实施波束形成。我们将开发一个等级贝叶斯人
用于在主题和研究的多个措施上聚集有效来源的框架,并将开发工具
对这些量表的信息流量测量进行统计测试。尽管脑电图和梅格录音有共同
存在已有四十年了,几乎没有可用的软件可以将这两种数据类型合并为同时记录(“ MEEG”数据),
增强源分离。我们最近表明,ICA分解还允许联合MEEG有效源
分解并将将MEG和联合MEEG数据分解和成像整合到EEGLAB工具集中。我们
将构建使用MRI-和FMRI和FMRI衍生的解剖图谱的工具,以告知EEG和MEG大脑的解释
源动力学。这些根本改进将进一步将非侵入性人类电生理学用于3-D
美国和全球的功能性皮质脑成像,从而加速了非侵入性基本和
临床人脑研究使用高度时间和空间分辨的脑电磁动力学测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arnaud Delorme其他文献
Arnaud Delorme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arnaud Delorme', 18)}}的其他基金
BRAIN Initiative: Hierarchical Event Descriptors (HED): a system to characterize events in neurobehavioral data
BRAIN Initiative:分层事件描述符 (HED):表征神经行为数据事件的系统
- 批准号:
10480619 - 财政年份:2022
- 资助金额:
$ 54.73万 - 项目类别:
BRAIN Initiative: Assessing development of event-related cortical network dynamics
BRAIN Initiative:评估事件相关皮层网络动态的发展
- 批准号:
10190670 - 财政年份:2021
- 资助金额:
$ 54.73万 - 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
- 批准号:
10475072 - 财政年份:2019
- 资助金额:
$ 54.73万 - 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
- 批准号:
10687858 - 财政年份:2019
- 资助金额:
$ 54.73万 - 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
- 批准号:
10228674 - 财政年份:2019
- 资助金额:
$ 54.73万 - 项目类别:
BRAIN INITIATIVE RESOURCE: DEVELOPMENT OF A HUMAN NEUROELECTROMAGNETIC DATA ARCHIVE AND TOOLS RESOURCE (NEMAR)
大脑倡议资源:人类神经电磁数据档案和工具资源的开发 (NEMAR)
- 批准号:
9795341 - 财政年份:2019
- 资助金额:
$ 54.73万 - 项目类别:
EEGLab: Software Analysis of Human Brain Dynamics
EEGLab:人脑动力学软件分析
- 批准号:
10737479 - 财政年份:2004
- 资助金额:
$ 54.73万 - 项目类别:
EEGLAB: Software for Analysis of Human Brain Dynamics
EEGLAB:人脑动力学分析软件
- 批准号:
10200896 - 财政年份:2004
- 资助金额:
$ 54.73万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Open-source Software Development Supplement for 3D quantitative analysisof mouse models of structural birth defects through computational anatomy
通过计算解剖学对结构性出生缺陷小鼠模型进行 3D 定量分析的开源软件开发补充
- 批准号:
10839199 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Full-stack automation for reliable and reproducible MRS of brain cancer
全栈自动化实现可靠且可重复的脑癌 MRS
- 批准号:
10632895 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
High-Resolution Lymphatic Mapping of the Upper Extremities with MRI
使用 MRI 进行上肢高分辨率淋巴图谱分析
- 批准号:
10663718 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别:
Enhancing robotic head and neck surgical skills using stimulated simulation
使用刺激模拟增强机器人头颈手术技能
- 批准号:
10586874 - 财政年份:2023
- 资助金额:
$ 54.73万 - 项目类别: