Structural Determinants of Allosteric Modulation of Brain GPCRs
脑 GPCR 变构调节的结构决定因素
基本信息
- 批准号:10450746
- 负责人:
- 金额:$ 39.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAlzheimer&aposs DiseaseBCL1 OncogeneBehaviorBenchmarkingBindingBiological ProcessBiologyBrainChemicalsCollaborationsComplexComputer AssistedComputer ModelsComputing MethodologiesConsultCrystallizationDataDetectionDevelopmentDiseaseDockingFeedbackFragile X SyndromeG-Protein-Coupled ReceptorsGenerationsHandHumanLaboratoriesLeadLibrariesLigandsMapsMembrane ProteinsMental disordersMetabotropic Glutamate ReceptorsMethodsMinorModelingModificationMolecular ConformationMuscarinic Acetylcholine ReceptorMutagenesisNeurosciencesParkinson DiseasePharmaceutical ChemistryPharmacologyResearchSamplingSchizophreniaSingle Nucleotide PolymorphismStructural ModelsStructureSystemTestingTranslatingaddictionbasecomparativedesigndrug discoveryexperienceimprovedin silicoinnovationlead optimizationmetabotropic glutamate receptor 3metabotropic glutamate receptor 4mutantnervous system disordernew technologynovelpatient populationpharmacophorepredictive modelingprogramsreceptorreceptor functionscaffoldsimulationsmall moleculetherapeutic developmenttherapeutic targettreatment strategy
项目摘要
SUMMARY
Modulators of G-Protein Coupled Receptors (GPCRs) in the human brain have a potential for development of
novel treatment strategies targeting neurological disorders such as schizophrenia, Parkinson’s disease, Alzheimer’s
disease, and fragile X syndrome/autism. Over the past years more than 10,000 compounds have been identified that
interact with muscarinic receptor (mAChRs) and metabotropic glutamate receptor (mGluRs) GPCRs, often allosteri-
cally modulating the receptor. Varying pharmacological effects are observed depending on which of several receptor
subtypes is engaged and whether the compound is a Positive or Negative Allosteric Modulator (PAM/NAM). The
picture is complicated by a number of non-synonymous Single Nucleotide Polymorphisms (nsSNPs) in these recep-
tors that are observed in patient populations. It becomes critical to understand when and how a modulator engages
the disease mutant receptor as a seemingly minor modification on a scaffold or ‘chemotype’ may shift selectivity or
cause a ‘mode switch’ between PAM and NAM. However, it is currently not possible to predict how a structural change
of the ligand translates into a shift in its pharmacology.
It is the central hypothesis of this proposal that a chemotype has an intrinsic ability to bind to a certain
allosteric binding pocket in a conserved binding mode and chemical modification on this chemotype dictates
selectivity, activity with respect to mutant receptors, or PAM versus NAM activity. With the recently determined
experimental structures of both mGluR and mAChR in complex with allosteric modulators we can test this hypothesis.
In combination with the breadth and depth of chemical space of known allosteric modulators, it is the objective of
this proposal to develop Quantitative Structure-Activity Relation (QSAR) models of allosteric modulation of
brain GPCRs. To leverage co-crystal structures as well as small molecule SAR for the construction of such models
this proposal develops innovative computational methods that integrate ligand-based (LB) and structure-based (SB)
computer aided drug discovery (CADD) methods. I will map QSAR models onto structural models of the allosteric
modulator in complex with the GPCR and so highlight the structural determinants of activity. Selected ligands will be
co-crystallized with the receptor to critically evaluate and ultimately confirm the computational modeling approaches
and facilitate CADD. In collaboration, I will demonstrate that such models spur the development of lead and probe
compounds with tailored pharmacological profiles that help study the biological function of these receptors. Compu-
tational models will be confirmed in an iterative feedback loop through mutagenesis studies and co-crystallization
through collaboration partners. Ultimately, they will become starting points for a second generation of allosteric mod-
ulators with the mode of action that is understood at atomic level of detail.
概括
人脑中G蛋白偶联受体(GPCR)的调节剂具有发展的潜力
针对神经系统疾病的新型治疗策略,例如精神分裂症,帕金森氏病,阿尔茨海默氏病
疾病和脆弱的X综合症/自闭症。在过去的几年中,已经确定了10,000多种化合物
与毒蕈碱受体(MACHR)和代谢型谷氨酸受体(MGLURS)GPCR相互作用,通常是变构
调用调节受体。根据几个受体中的哪个观察到不同的药物效应
亚型参与,该化合物是阳性还是负变构调节剂(PAM/NAM)。这
在这些接受中,许多非同义单核苷酸多态性(NSSNP)使图片复杂化。
在患者人群中观察到的TOR。了解调制器何时以及如何参与
疾病突变受体是在支架或“化学型”上看似较小的修饰,可能会改变选择性或
在PAM和NAM之间引起“模式开关”。但是,目前无法预测结构性变化
配体的药理学转变。
该提议的核心假设是,化学型具有与某个特定结合的内在能力
在保守的结合模式下的变构结合袋,并且在这种化学型上进行化学修饰决定了
选择性,相对于突变接收器的活性,或PAM与NAM活性。与最近确定的
Mglur和MACHR的实验结构与变构调节剂复杂化,我们可以检验该假设。
结合已知变构调节剂的化学空间的宽度和深度,它是目的
这项提出了开发定量结构 - 活性关系(QSAR)模型的建议。
脑GPCR。利用共晶结构以及小分子SAR来构建此类模型
该提案开发了创新的计算方法,该方法整合了基于配体的(LB)和基于结构的(SB)
计算机辅助药物发现(CADD)方法。我将QSAR模型映射到变构的结构模型
与GPCR复杂的调节器,因此强调了活动的结构决定者。选定的配体将是
与接收器共结晶,以批判性评估并最终确认计算建模方法
并促进CADD。在合作中,我将证明这种模型刺激了铅的发展并证明
具有量身定制的药物特征的化合物,有助于研究这些受体的生物学功能。组成
通过诱变研究和共结晶将在迭代反馈回路中确认倾向模型
通过合作伙伴。最终,它们将成为第二代变构模式的起点
以原子级别的细节层面理解的作用方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jens Meiler其他文献
Jens Meiler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jens Meiler', 18)}}的其他基金
Structural Determinants of Allosteric Modulation of Brain GPCRs
脑 GPCR 变构调节的结构决定因素
- 批准号:
10207579 - 财政年份:2019
- 资助金额:
$ 39.6万 - 项目类别:
Structural Determinants of Allosteric Modulation of Brain GPCRs
脑 GPCR 变构调节的结构决定因素
- 批准号:
9979812 - 财政年份:2019
- 资助金额:
$ 39.6万 - 项目类别:
Structural Determinants of Allosteric Modulation of Brain GPCRs
脑 GPCR 变构调节的结构决定因素
- 批准号:
10650803 - 财政年份:2019
- 资助金额:
$ 39.6万 - 项目类别:
Structural Determinants of Human Antibodies neutralizing the Ebola Virus
中和埃博拉病毒的人类抗体的结构决定因素
- 批准号:
9304960 - 财政年份:2016
- 资助金额:
$ 39.6万 - 项目类别:
Small Molecule Probes to Investigate Structure and Function of Y Receptors
研究 Y 受体结构和功能的小分子探针
- 批准号:
8578312 - 财政年份:2013
- 资助金额:
$ 39.6万 - 项目类别:
Small Molecule Probes to Investigate Structure and Function of Y Receptors
研究 Y 受体结构和功能的小分子探针
- 批准号:
8890156 - 财政年份:2013
- 资助金额:
$ 39.6万 - 项目类别:
Computational Design of Protein-Ligand Interfaces - a Therapeutic Strategy
蛋白质-配体界面的计算设计 - 一种治疗策略
- 批准号:
8372321 - 财政年份:2012
- 资助金额:
$ 39.6万 - 项目类别:
Computational Design of Protein-Ligand Interfaces - a Therapeutic Strategy
蛋白质-配体界面的计算设计 - 一种治疗策略
- 批准号:
8854103 - 财政年份:2012
- 资助金额:
$ 39.6万 - 项目类别:
Computational Design of Protein-Ligand Interaces - a Therapeutic Strategy
蛋白质-配体相互作用的计算设计 - 一种治疗策略
- 批准号:
8551916 - 财政年份:2012
- 资助金额:
$ 39.6万 - 项目类别:
Computational Design of Protein-Ligand Interfaces - a Therapeutic Strategy
蛋白质-配体界面的计算设计 - 一种治疗策略
- 批准号:
8664893 - 财政年份:2012
- 资助金额:
$ 39.6万 - 项目类别:
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
A software tool to facilitate variable-level equivalency and harmonization in research data: Leveraging the NIH Common Data Elements Repository to link concepts and measures in an open format
促进研究数据中变量级别等效性和协调性的软件工具:利用 NIH 通用数据元素存储库以开放格式链接概念和测量
- 批准号:
10821517 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
- 批准号:
10603902 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
- 批准号:
10735564 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别:
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 39.6万 - 项目类别: