Interrogation of Microbial Natural Product Methyltransferases
微生物天然产物甲基转移酶的研究
基本信息
- 批准号:10450748
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnabolismAnti-Bacterial AgentsAntibioticsBindingBiologicalCarrier ProteinsCatalysisCell physiologyCellsClinicCommunicationDetectionDrug DesignDrug TargetingEngineeringEnzymesEpigenetic ProcessEukaryotaFosteringFutureGene Expression RegulationGoalsIn VitroIndividualInfectionInvestigationLifeMediatingMethyltransferaseMolecularMolecular BiologyMultiple Bacterial Drug ResistanceMutagenesisNatural ProductsNatureNeuronsNucleic AcidsOrganic SynthesisPathogenicityPathway interactionsPeptidesPharmaceutical ChemistryPharmaceutical PreparationsPharmacologic SubstancePlayPrevalenceProductionPropertyProtein EngineeringProtein MethyltransferasesProteinsProteomeResearchResistanceRoleS-AdenosylmethionineSignal TransductionSignaling MoleculeSpecificityStructureSubstrate SpecificityVirulence FactorsWorkactivity-based protein profilingalkyl groupanaloganti-cancerbasebiophysical techniquescofactorcombinatorialcost effectivedesignin vivoinhibitorinsightmanmicrobialmicroorganismnovelpathogenpharmacophorepressureprogramsprotein complexprotein protein interactionrational designscreeningsmall moleculestructural biologytherapeutic targettool
项目摘要
PROJECT SUMMARY/ABSTRACT
The increased prevalence of multi-drug resistant bacteria has led to an urgent unmet need to develop new an-
timicrobial drugs. Targeting bacterial natural product biosynthesis has emerged as a promising avenue, due to
the role of natural products as virulence factors, signaling factors, and agents of microbial warfare. However, to
date, no drugs targeting enzymes in these biosynthetic pathways have reached the clinic. Hence, systematic
investigations into key biosynthetic enzymes are necessary to understand fully their individual roles in virulence
factor production.
S-adenosyl-L-methionine (SAM)-dependent methyltransferases are ubiquitous throughout all domains of life
and modify a diverse array of substrates, including proteins, nucleic acids, and natural products. In eukaryotes,
methyltransferase activity modulates cellular processes such as epigenetic gene regulation and neuronal
communication; consequently, these methyltransferases are extensively studied and have been validated as
anticancer targets. In contrast, natural product methyltransferases have yet to be explored as therapeutic “tar-
gets”, in spite of their important role in the biosynthesis of pathogenic virulence factors and pharmaceutically
relevant compounds. During biosynthesis, natural product methyltransferases recognize substrates that are
covalently tethered to a carrier protein; hence, successful methyl transfer is a function of both substrate recog-
nition and proper protein-protein interactions between the methyltransferase and the carrier protein. The tran-
sient nature of these protein-protein interactions makes targeting methyltransferases particularly challenging,
yet elucidating the molecular basis of cofactor-protein, substrate-protein, and protein-protein recognition would
offer a significant step towards advancing these efforts.
Herein, our overall goal is to identify and engineer critical methyltransferase interactions during the biosynthe-
sis of non-ribosomal peptide and polyketide-derived virulence factors by combining organic synthesis, ad-
vanced molecular biology, and structural biology. We propose to (aim 1) develop small molecules to interro-
gate cofactor and substrate methyltransferase activity, (aim 2) design tools to capture methyltransferase-carrier
protein interactions, and (aim 3) develop selective activity-based probes for bacterial natural product methyl-
transferases for detection and identification in the bacterial proteome. The insights from this work will be broad-
ly significant by providing critical first steps in structure-based design of drugs targeting bacterial methyltrans-
ferases, fostering combinatorial biosynthetic efforts of alkyl groups into unnatural products with precise regio-,
stereo-, and chemoselectivity, and advancing medicinal chemistry efforts that alter biological and physico-
chemical properties of privileged pharmacophores through chemoenzymatic synthesis.
项目摘要/摘要
多药耐药细菌的患病率增加导致迫切需要发展新的
针对性的天然产品生物合成的针鼻虫药也已成为有前途的途径
天然产物作为病毒因素,信号因子和微生物战的药物的作用。
日期,没有针对这些生物合成途径的酶的药物已经到达诊所
对关键生物合成酶的研究是必要的
因子产生。
S-腺苷-l-甲硫氨酸(SAM)依赖性的甲基二富甲基是无处不在的所有生命领域
并修改多种底座,包含蛋白,核酸和天然产物。
甲基转移酶活性模块化的细胞过程,例如表观遗传基因调节和神经元
沟通;在
抗癌靶标的。
尽管在病原体因素因素和药物的生物合成中,但它们在生物合成中起作用。
相关化合物。
共价绑在载体蛋白上;
甲基转移酶和载体蛋白之间的蛋白质蛋白质相互作用。
这些蛋白质蛋白相互作用的良性性质使靶向甲基转移酶特别具有挑战性,
然而,阐明了辅因子 - 蛋白质蛋白的分子基础
朝着推进敌方迈出了重要一步。
在此,我们的总体目标是在生物合成期间识别和设计关键的甲基转移酶相互作用 -
通过结合有机合成,ad-
分子生物学和结构生物学。
栅极辅因子和底物甲基转移酶活性(AIM 2)设计工具以捕获甲基转移酶载体
蛋白质相互作用,(AIM 3)开发基于细菌天然产物甲基的选择性探针
在这项工作的洞察力中进行检测和鉴定的转移。
通过在基于结构的基于结构的药物设计方面提供关键的第一步,以靶向双甲基甲基的药物 -
烷基的烷基组合生物合成源性的野禽促进具有精确区域的非天然产物
立体和化学选择性,并推进改变生物学和物理学的药物化学产物
通过化学酶合成的特权药理化学特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony D. Davis其他文献
Tony D. Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony D. Davis', 18)}}的其他基金
Interrogation of Microbial Natural Product Methyltransferases
微生物天然产物甲基转移酶的研究
- 批准号:
10674546 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Interrogation of Microbial Natural Product Methyltransferases
微生物天然产物甲基转移酶的研究
- 批准号:
10373164 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
葡萄糖神经酰胺合成酶GCS调控植物磷代谢的分子机制研究
- 批准号:32300234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Harnessing iron acquisition to hinder enterobacterial pathogenesis
利用铁的获取来阻碍肠细菌的发病机制
- 批准号:
10651432 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Uniquely constrained peptides for modulating TNF receptor activity
用于调节 TNF 受体活性的独特限制肽
- 批准号:
10387498 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Enzymatic Fluoroalkylation using Te-Adenosyl-Telluromethionine Analogs and Late-Stage Diversification of Natural Products Exhibiting Antibacterial Behavior
使用Te-腺苷-碲甲硫氨酸类似物进行酶促氟烷基化以及表现出抗菌行为的天然产物的后期多样化
- 批准号:
10196336 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Interrogation of Microbial Natural Product Methyltransferases
微生物天然产物甲基转移酶的研究
- 批准号:
10674546 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Enzymatic Fluoroalkylation using Te-Adenosyl-Telluromethionine Analogs and Late-Stage Diversification of Natural Products Exhibiting Antibacterial Behavior
使用Te-腺苷-碲甲硫氨酸类似物进行酶促氟烷基化以及表现出抗菌行为的天然产物的后期多样化
- 批准号:
10372230 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别: