Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
基本信息
- 批准号:10448260
- 负责人:
- 金额:$ 38.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-07 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalActinsAnimal GeneticsAnimal ModelAnteriorApoptosisBiochemicalBiological AssayBiomechanicsBiophysical ProcessBiophysicsCadherinsCardiacCardiac developmentCell Differentiation processCellsChemicalsChickClinicalCongenital AbnormalityCrosslinkerCytoskeletonDefectDevelopmentDextrocardiaDouble Outlet Right VentricleDrosophila genusEmbryoEmbryonic HeartEventExhibitsFetal DeathGeneticGenitalGenitaliaHandednessHeartHindgutHumanHydrogelsIn VitroInfantLeftLibrariesLiteratureLive BirthMeasuresMicrofabricationMolecularMorphogenesisMorphologyMyocardiumMyosin Type IINatureNodalOrganOutcomePharmaceutical PreparationsPhenotypePhosphotransferasesPopulationPropertyProtein IsoformsProtein Kinase CResearchRoleRotationScaffolding ProteinSideSignal PathwaySignal TransductionStructureSurfaceSystemTechnologyTeratogensTissuesTraction Force MicroscopyTranslatingTubeVertebratesVisceralWorkalpha Actininbasebiomechanical modelbiophysical analysiscongenital heart disordercrosslinkcytokinedirectional cellembryo cultureexperimental studyfascinhigh throughput screeningin vitro Modelinhibitorinterestkinase inhibitorlive cell imagingmechanical forcemouse modelnovelscreeningseptal defectsmall moleculesmall molecule inhibitortool
项目摘要
Defects in laterality are observed in more than 1 in 8000 live births and have significant clinical implications.
The embryonic heart starts as a straight cardiac tube along the midline of the embryo, which is subsequently
transformed into a c-shaped heart loop reliably toward the right side of the body. This cardiac c-looping is
considered as the earliest evident event of left-right (LR) asymmetry breaking (also called chirality or
handedness) of a human organ. The inversed lateralization of cardiac looping often leads to severe clinical
outcomes, including dextrocardia, septum defects, double outlet right ventricle, and even death of fetuses and
infants. Accumulating evidence suggests that asymmetric cardiac looping derives from an unknown tissue-
intrinsic mechanism. Recently, we have recapitulated chiral morphogenesis on micropatterned surfaces and in
3D hydrogels and demonstrated that cardiac cells have a definite chirality before asymmetric looping. Protein
kinase C (PKC) activators can reverse both cell chirality and cardiac c looping. Our rationale is that novel cell
chirality based high-throughput platforms, together with a better understanding of molecular mechanisms of
cell chirality, can facilitate the LR symmetry research. We propose to use a combination of micro-fabrication,
hydrogel technology, live-cell imaging, molecular assays, traction force microscopy, high-throughput screening,
ex vivo culture, and genetic mouse models as tools to elucidate the biophysical and biochemical mechanisms.
Our objectives are to determine biomolecular and biomechanical mechanisms of PKC regulated cell chirality
and asymmetric looping and to identify cytoskeletal mechanisms of cell chirality during cardiac c-looping.
SPECIFIC AIM 1: Identify components and signaling pathways that regulate cardiac chirality with high-
throughput screening and validate with ex ovo embryo culture. We will screen inhibitors/activators of PKC
isoforms, their downstream effectors, possible substrates, and a small-molecule kinase library, determine
mechanisms of action, and validate the findings with the whole-embryo ex ovo culture.
SPECIFIC AIM 2: Determine the biomechanical role of cell chirality in multicellular morphogenesis. We
will examine whether chiral mechanical forces are sufficient to induce cardiac c-looping using traction force
microscopy and whether the cells on ventral myocardium exhibit intrinsic chiral biases.
SPECIFIC AIM 3: Determine cytoskeletal mechanisms in cardiac cell chirality during c-looping. We will
analyze the chirality of actin dynamics of cardiac cells, observe its change under drugs of interest, and confirm
the findings with ex ovo whole-embryo culture and genetic mouse models.
If the project is successful, we will be able to establish a set of novel high-throughput platforms for studying the
biophysics of asymmetric cardiac looping by measuring cell chirality, and further our understanding of
congenital heart disease. Also, this proposed research is transformative, and potentially open a new field of
research: cell chirality, a fundamental cellular property defining symmetry breaking in tissue development.
横向性缺陷在8000个活产中的超过1个以上,具有显着的临床意义。
胚胎心脏沿着胚胎的中线开始是直型心脏管,随后是
可靠地向身体右侧可靠地转变为C形心循环。这种心脏C循环是
被认为是最早的左右事件(LR)不对称破坏(也称为手性或
人体器官的手。心脏循环的偏侧化通常会导致严重的临床
结局,包括右心脏,隔膜缺陷,双出口右心室,甚至是胎儿死亡和死亡
婴儿。积累的证据表明,不对称心脏循环源自未知的组织
内在机制。最近,我们概括了微图表上的手性形态发生和
3D水凝胶并证明心脏细胞在不对称循环之前具有明确的手性。蛋白质
激酶C(PKC)活化剂可以逆转细胞手性和心脏C循环。我们的理由是那个新细胞
基于手性的高通量平台,以及对分子机制的更好理解
细胞手性,可以促进LR对称研究。我们建议使用微型制作的组合,
水凝胶技术,活细胞成像,分子测定,牵引力显微镜,高通量筛选,
离体培养和遗传小鼠模型作为阐明生物物理和生化机制的工具。
我们的目标是确定PKC调节细胞手性的生物分子和生物力学机制
和不对称的循环并确定心脏循环过程中细胞手性的细胞骨架机制。
特定目的1:确定组件和信号通路,以高度调节心脏手性
吞吐量筛选并用evo胚胎培养物进行验证。我们将筛选PKC的抑制剂/激活剂
同工型,其下游效应子,可能的底物和小分子激酶库,确定
作用机理,并用整个Evo培养物来验证发现。
具体目标2:确定细胞手性在多细胞形态发生中的生物力学作用。我们
将检查手性机械力是否足以使用牵引力诱导心脏C循环
显微镜以及腹心肌上的细胞是否表现出内在的手性偏见。
特定目标3:确定C循环过程中心脏细胞手性的细胞骨架机制。我们将
分析心脏细胞肌动蛋白动力学的手性,观察其在感兴趣的药物下的变化,并确认
具有外卵形全孔培养和遗传小鼠模型的发现。
如果该项目成功,我们将能够建立一组新型的高通量平台,以研究该平台
通过测量细胞手性的非对称心脏循环的生物物理学,并进一步了解
先天性心脏病。此外,这项拟议的研究具有变革性,并有可能开放
研究:细胞手性,一种基本的细胞特性,定义了组织发育中对称性破坏。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Q. Wan其他文献
Leo Q. Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Q. Wan', 18)}}的其他基金
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 38.98万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 38.98万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10650246 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10838024 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Cell Chirality Based In Vitro Models For Embryonic Development and Abnormalities
基于细胞手性的胚胎发育和异常体外模型
- 批准号:
8757997 - 财政年份:2014
- 资助金额:
$ 38.98万 - 项目类别:
相似海外基金
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10650246 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10838024 - 财政年份:2021
- 资助金额:
$ 38.98万 - 项目类别:
Targeting the phosphoinositide kinase chain to prevent breast cancer metastasis
靶向磷酸肌醇激酶链预防乳腺癌转移
- 批准号:
7928227 - 财政年份:2009
- 资助金额:
$ 38.98万 - 项目类别:
Targeting the phosphoinositide kinase chain to prevent breast cancer metastasis
靶向磷酸肌醇激酶链预防乳腺癌转移
- 批准号:
7662867 - 财政年份:2009
- 资助金额:
$ 38.98万 - 项目类别: