Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
基本信息
- 批准号:10448106
- 负责人:
- 金额:$ 56.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsArtificial IntelligenceAutomationBenchmarkingBiological AssayBiological TestingChemicalsChemistryCollectionCommunicationCommunitiesComplexComputer AssistedComputer softwareConsumptionDataData ScienceDecision MakingDevelopmentDiseaseDocumentationEvaluationFamilyFeedbackGoalsGraphHealthHumanInformaticsInfrastructureLaboratoriesLearningLearning ModuleLiteratureMachine LearningManualsMedicineModelingMolecularNational Center for Advancing Translational SciencesPerformancePharmaceutical ChemistryPharmacologic SubstanceProceduresProcessPropertyPublishingReactionReadabilityRecommendationResearchRouteRunningScheduleStructureSynthesis ChemistryTherapeuticTimeTranslationsTwin Multiple BirthVisualizationVisualization softwareWorkapplication programming interfacebasechemical reactionchemical synthesischeminformaticscostdata-driven modeldeep learningdesigndigitaldrug candidatedrug discoveryexperimental studygraphical user interfaceimprovedinnovationinterestknowledge graphlead optimizationnegative affectnovelnovel therapeuticsopen sourceopen source tooloperationpreclinical developmentpredictive modelingprocess optimizationprogramsresponsescreeningsimulationsmall moleculesoftware developmenttheoriestherapeutic candidatetoolvirtual
项目摘要
PROJECT SUMMARY
Access to complex chemical matter (e.g., small molecule drug candidates) is a core requirement
for testing biological hypotheses and probing human health. Current approaches to chemical
synthesis rely on time-consuming planning and labor-intensive manual synthesis, which is a
rate-limiting step in the discovery of new functional molecules. This collaborative project
comprises the development of several virtual modules to support the multi-step chemical
synthesis of new molecules in autonomous laboratories. These modules are designed to
benefit traditional synthetic chemists in addition to automation chemists using the integrated
hardware platform being developed by the ASPIRE team at NCATS. Computer-aided synthesis
planning can be viewed as a hierarchical process of elaboration starting from the list of
molecules of interest: (1) retrosynthetic planning to identify suitable starting materials and
intermediates, (2) reaction condition recommendation to identify the conditions with which each
reaction step should be run, (3) translation of hypothetical reaction steps into action sequences
executable on automated hardware. Optional but valuable components include (4) recording
procedures through an experimental planning module, (5) optimization of the timing and order
of action sequences to most efficiently synthesize multiple synthetic targets via a digital twin of
the platform, and (6) the iterative optimization of process parameters based on experimental
responses in a feedback loop. This program will address each of these needs through the
development of new software solutions employing state of the art algorithms in graph network
theory, cheminformatics, deep learning for chemistry, and optimization. Software modules will
be written using established software development best practices for ease of cross-platform
deployment (via containerization) and long-term maintainability (via extensive
documentation). Further, each module will be deployed as an independent microservice with
a common application programming interface (API) format for inter-module communication and
integration with existing NCATS modules, including graphical user interfaces. These efforts will
be accomplished through close partnership between MIT and NCATS to enhance the overall
capabilities of the NCATS ASPIRE platform.
项目摘要
获取复杂的化学物质(例如,小分子候选药物)是核心要求
用于测试生物学假设和探测人类健康。当前的化学方法
合成依赖于耗时的计划和劳动密集型手动合成,这是一个
发现新功能分子的速率限制步骤。这个协作项目
包括几个虚拟模块的开发以支持多步化学
自治实验室中新分子的合成。这些模块设计为
除了使用集成的自动化化学家外,受益于传统的合成化学家
硬件平台由NCAT的Aspire团队开发。计算机辅助合成
可以将计划视为从列表开始
感兴趣的分子:(1)循环合成计划,以识别合适的起始材料和
中间体,(2)反应条件建议,以确定每个条件
应进行反应步骤,(3)将假设反应步骤转换为动作序列
可在自动硬件上执行。可选但有价值的组件包括(4)录制
通过实验规划模块的程序,(5)优化时间和顺序
最有效地通过数字双胞胎合成多个合成目标的动作序列
平台和(6)基于实验的过程参数的迭代优化
反馈循环中的响应。该程序将通过
开发采用图形网络中采用艺术算法的新软件解决方案的开发
理论,化学信息学,化学深度学习和优化。软件模块将
使用既定的软件开发最佳实践书写,以便于跨平台
部署(通过容器化)和长期可维护性(通过广泛
文档)。此外,每个模块将作为独立的微服务部署
用于模块间通信的常见应用程序编程接口(API)格式
与现有的NCAT模块集成,包括图形用户界面。这些努力会
通过MIT和NCAT之间的密切合作伙伴关系,以增强整体
NCATS ASPIRE平台的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connor Wilson Coley其他文献
Connor Wilson Coley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Connor Wilson Coley', 18)}}的其他基金
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
- 批准号:
10430402 - 财政年份:2022
- 资助金额:
$ 56.25万 - 项目类别:
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
- 批准号:
10642813 - 财政年份:2022
- 资助金额:
$ 56.25万 - 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
- 批准号:
10594577 - 财政年份:2022
- 资助金额:
$ 56.25万 - 项目类别:
Accelerated discovery of synthetic polymers for ribonucleoprotein delivery through the integration of active learning, machine learning, and polymer science
通过整合主动学习、机器学习和聚合物科学,加速发现用于核糖核蛋白递送的合成聚合物
- 批准号:
10195432 - 财政年份:2021
- 资助金额:
$ 56.25万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 56.25万 - 项目类别: