Accelerated discovery of synthetic polymers for ribonucleoprotein delivery through the integration of active learning, machine learning, and polymer science

通过整合主动学习、机器学习和聚合物科学,加速发现用于核糖核蛋白递送的合成聚合物

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Gene editing systems such as CRISPR/Cas9 have rapidly grown in popularity as research tools and hold the potential to cure a diverse set of genetic disorders. However, effective, safe, and effective delivery remains a significant challenge for therapeutic translation and for application to cell types that are difficult to culture ex vivo. Ideally, intact Cas9 protein would be delivered with its guide RNA (sgRNA) as a purified ribonucleoprotein (RNP), as opposed to Cas9-encoding mRNA or plasmids, to minimize off-target effects. Viral vectors (e.g., AAVs) cannot deliver such large cargo due to their limited capsid size, which exhibit additional challenges with respect to immunogenicity, cost, and manufacturability. Fortunately, synthetic polymers--widely studied in the context of nucleic acid delivery and as biomaterials--have recently shown promise as vehicles for in vivo delivery of sgRNA- Cas9 RNPs. However, there are no consistent design principles by which novel synthetic polymers with improved delivery efficiency, tissue specificity, and safety can be developed. There are far too many polymer structures to test exhaustively or through ad hoc experimentation, so a systematic approach to polymer design, synthesis, and evaluation is required to identify promising candidates. This proposal presents a framework for the discovery of functional polymers through Bayesian experimental design. Machine learning models trained on experimental outcomes will serve as surrogates for experimentation in order to virtually screen a massive library of potential polymer candidates. Polymer candidates will be selected algorithmically through Bayesian Optimization to balance exploration of unknown chemical space and exploitation of structures known to effectively deliver RNPs. Aim 1 will involve (a) the synthesis of a diverse library of biodegradable poly(ester urea amines) (PEUAs), (b) the evaluation of their functional performance using a model fluorescent reporter knock-in/knock-out assay, a cell viability assay, and a metabolic activity assay, and (c) the development and validation of a machine learning model to learn a quantitative relationship between polymer structure/composition and these multiple performance metrics. Aim 2 will involve (a) the enumeration of the chemical space of synthetically accessible PEUAs, and (b) the development and application of a Bayesian Optimization framework leveraging the machine learning model from Aim 1 to guide the selection of candidate polymers from the enumerated space through iterative rounds of experimentation. The outcome of the proposed work will be an integrated tool combining machine learning and polymer science for the unbiased exploration of a broad biomaterial design space, validated through the development of effective and safe RNP delivery vehicles for gene editing that outperform existing commercial polymeric vehicle solutions.
项目摘要/摘要 诸如CRISPR/CAS9之类的基因编辑系统作为研究工具迅速增长,并持有 治愈各种遗传疾病的潜力。但是,有效,安全和有效的交付仍然是 治疗翻译和应用于难以在体内培养的细胞类型的重大挑战。 理想情况下,完整的Cas9蛋白将用其引导RNA(SGRNA)作为纯化的核糖核蛋白(RNP)传递, 与CAS9编码mRNA或质粒相反,以最大程度地减少脱靶效应。病毒向量(例如AAVS)不能 由于其封盖尺寸有限,因此交付了如此大的货物,在 免疫原性,成本和制造性。幸运的是,合成聚合物 - 在 核酸的递送和作为生物材料的递送 - 最近显示出有望作为体内递送sgrna-的车辆 CAS9 RNP。但是,没有一致的设计原理,可以通过这些原理进行改进的新型合成聚合物 可以开发递送效率,组织特异性和安全性。聚合物结构太多了 详尽或通过临时实验进行测试,因此是一种系统的聚合物设计,合成的方法 需要评估以确定有希望的候选人。该提案为发现的框架提出了一个框架 通过贝叶斯实验设计的功能聚合物。在实验中训练的机器学习模型 结果将作为实验的替代物,以便几乎筛选出潜在的巨大库 聚会候选人。将通过贝叶斯优化选择聚合物候选算法 平衡对未知化学空间的探索和对已知有效传递RNP的结构的开发。 AIM 1将涉及(a)合成可生物降解的聚(酯尿素胺)(PEUAS)(b)的多元化库。 使用模型荧光记者敲入/敲除测定法,对其功能性能的评估 细胞活力测定和代谢活性测定,以及(c)机器学习的开发和验证 学习聚合物结构/组成与这些多重性能之间的定量关系的模型 指标。 AIM 2将涉及(a)合成可访问的PEUA的化学空间和(b) 贝叶斯优化框架的开发和应用利用机器学习模型 从AIM 1指导从枚举空间选择候选聚合物到迭代弹的选择 实验。拟议工作的结果将是结合机器学习和的集成工具 聚合物科学对广泛的生物材料设计空间的无偏探索,通过 开发有效且安全的RNP递送工具,用于基因编辑,以优于现有商业 聚合物车辆溶液。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Connor Wilson Coley其他文献

Connor Wilson Coley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Connor Wilson Coley', 18)}}的其他基金

Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
  • 批准号:
    10430402
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
  • 批准号:
    10448106
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:
Informatics and Machine Learning Modules for Research Planning, Scheduling, Simulation, and Optimization in the ASPIRE Autonomous Laboratory
用于 ASPIRE 自主实验室研究规划、调度、模拟和优化的信息学和机器学习模块
  • 批准号:
    10642813
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
  • 批准号:
    10594577
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Point-of-care pharmacogenomic testing to optimize isoniazid dosing for tuberculosis prevention
床旁药物基因组学测试可优化预防结核病的异烟肼剂量
  • 批准号:
    10709589
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:
Point-of-care pharmacogenomic testing to optimize isoniazid dosing for tuberculosis prevention
床旁药物基因组学测试可优化预防结核病的异烟肼剂量
  • 批准号:
    10537650
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:
Probing the rules of molecular recognition through the de novo design of proteins that bind small-molecule drugs.
通过从头设计结合小分子药物的蛋白质来探索分子识别的规则。
  • 批准号:
    10463468
  • 财政年份:
    2022
  • 资助金额:
    $ 19.76万
  • 项目类别:
MHC and KIR Sequencing and Association Analyses in the iGeneTRAiN Studies
iGeneTRAiN 研究中的 MHC 和 KIR 测序及关联分析
  • 批准号:
    10438855
  • 财政年份:
    2020
  • 资助金额:
    $ 19.76万
  • 项目类别:
MHC and KIR Sequencing and Association Analyses in the iGeneTRAiN Studies
iGeneTRAiN 研究中的 MHC 和 KIR 测序及关联分析
  • 批准号:
    10251946
  • 财政年份:
    2020
  • 资助金额:
    $ 19.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了