Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
基本信息
- 批准号:10446946
- 负责人:
- 金额:$ 35.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAdaptive Immune SystemAgonistAntibodiesAntigensArchitectureB cell repertoireB-Cell Antigen ReceptorB-LymphocytesBar CodesBioinformaticsBloodCOVID-19 patientCancer PatientCellsCharacteristicsClinicalComputational TechniqueComputer AnalysisComputer softwareCoronavirusCustomDataDevelopmentDiseaseEnvironmentEpitopesEsophagogastric JunctionEsophagusEvaluationEvolutionFutureGene ExpressionGenerationsGenetic HeterogeneityGoalsGrowthImmuneImmune responseImmunodiagnosticsImmunoglobulinsImmunologic ReceptorsImmunotherapeutic agentImmunotherapyInfectionInvestigationJointsLeadMachine LearningMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of prostateMeasuresMethodsModalityModelingMolecularNatureOutcomePathway AnalysisPatternProbabilityProcessPropertyProvengePythonsResolutionRoleSpecificitySpecimenStatistical MethodsT cell responseT-Cell ReceptorT-LymphocyteTNFRSF5 geneTechniquesTimeTumor ImmunityVirus DiseasesVisualizationVisualization softwareadaptive immune responseanalysis pipelineanalytical toolantigen antibody bindingbasebioinformatics toolbiomarker discoverycancer immunotherapycancer typecell typeclinical prognosticclinically relevantfeature selectionflexibilitygenetic signaturehigh dimensionalityimmunogenicimprovedindividual responsenetwork architecturenext generation sequencingnovelopen sourcepredictive modelingprognosticpublic repositoryreceptorrespiratoryresponders and non-respondersresponsesingle-cell RNA sequencingtooltranscriptometumoruser-friendlyvaccine discovery
项目摘要
PROJECT SUMMARY
The adaptive immune system is responsible for the specific recognition and elimination of antigens originating
from infection and disease. It recognizes antigens via an immense array of antigen-binding antibodies (B-cell
receptors, BCRs) and T-cell receptors (TCRs), the immune repertoire. Because of the enormous breadth of
epitopes recognized by immune repertoires, immune repertoires are extremely diverse and dynamic. Advances
in immune receptor sequencing (Rep-seq), such as next generation sequencing, have driven the quantitative
and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the
immune receptor sequence landscape. However, the current analysis tools lack the ability to track and examine
the dynamic nature of the repertoire across serial time points or correlate with clinical outcomes. We propose to
use network analysis and formulate a novel ensemble feature selection approach, along with other
advanced machine learning techniques and statistical approaches (e.g., Bayesian nonparametric approach
and shrinkage estimation method), to interrogate and measure immune repertoire architecture longitudinally
and in a clinical context. Network analysis is a powerful approach that can help us identify TCRs sharing antigen
specificity and highly mutable BCR, which can help to develop or improve existing immunotherapeutics and
immunodiagnostics. To integrate gene expression data and scRep-seq data in single-cell setting, we propose to
apply the multitable mixed-membership approach to construct a network to increase the resolution of T and
B cell clusters. In addition, we assess the importance of shared clusters by introducing Bayes factor to
incorporate clonal generation probability and real data abundance. B and T cell responses develop in parallel
and influence one another, thus we will further study how BCR/TCR network properties interact, in addition to
assessing their individual response separately. We will implement the proposed methods on multiple studies to
better illustrate the diversity and richness of the data to demonstrate the flexibility and power of the proposed
tools. These studies are unique and generalizable, because they include three cancer types spanning from
immunogenic to non-immunogenic in both metastatic and localized settings with different
immunotherapeutic modalities. In addition, the proposed methods can be used to study immune response to
diseases besides cancer, including respiratory coronaviruses, such as SARS-CoV-2. Therefore, first, we will
investigate the landscape of bulk Rep-seq changes over serial timepoints for prostate cancer patients who
received Sipuleucel-T and COVID-19 patients. We will develop prognostic/prediction model based on network
properties with clinical outcome/characteristics for durvalumab-treated lung cancer patients to elucidate the
clinically prognostic features of the network as well classify SARS-CoV-2 infected patients from healthy donors.
Moreover, based on unique features of single-cell RNA sequencing, we will classify the immune cells and study
the T and B cell responses to immunotherapy (CD40 agonist antibody) for esophageal and gastroesophageal
junction cancer patients. Furthermore, we will develop bioinformatics software by incorporating the proposed
methods and techniques to tackle the complexity of the immunosequencing data in a translational fashion and
provide a comprehensive platform with user-friendly visualization tools.
项目概要
适应性免疫系统负责特异性识别和消除源自抗原的抗原。
来自感染和疾病。它通过大量抗原结合抗体(B 细胞
受体(BCR)和 T 细胞受体(TCR),免疫库。由于其巨大的广度
免疫组库识别的表位,免疫组库极其多样化且动态。进展
免疫受体测序(Rep-seq),例如下一代测序,推动了定量研究
和免疫库的分子水平分析,从而揭示免疫组库的高维复杂性
免疫受体序列景观。然而,目前的分析工具缺乏跟踪和检查的能力
一系列时间点上的曲目的动态性质或与临床结果相关。我们建议
使用网络分析并制定一种新颖的集成特征选择方法以及其他方法
先进的机器学习技术和统计方法(例如贝叶斯非参数方法
和收缩估计方法),纵向询问和测量免疫库结构
并在临床背景下。网络分析是一种强大的方法,可以帮助我们识别共享抗原的 TCR
特异性和高度可变的 BCR,有助于开发或改进现有的免疫疗法和
免疫诊断。为了在单细胞环境中整合基因表达数据和 scRep-seq 数据,我们建议
应用多表混合成员方法构建网络以提高 T 和
B 细胞簇。此外,我们通过引入贝叶斯因子来评估共享集群的重要性
结合克隆生成概率和真实数据丰度。 B 细胞和 T 细胞反应并行发展
并相互影响,因此我们将进一步研究BCR/TCR网络属性如何相互作用,除了
分别评估他们的个人反应。我们将在多项研究中实施所提出的方法,以
更好地说明数据的多样性和丰富性,以展示所提出的灵活性和力量
工具。这些研究是独特且具有普遍意义的,因为它们包括三种癌症类型:
在转移性和局部环境中具有不同的免疫原性和非免疫原性
免疫治疗方式。此外,所提出的方法可用于研究免疫反应
除癌症以外的疾病,包括呼吸道冠状病毒,例如 SARS-CoV-2。因此,首先,我们将
研究前列腺癌患者在连续时间点上的批量 Rep-seq 变化情况
接收了 Sipuleucel-T 和 COVID-19 患者。我们将开发基于网络的预测/预测模型
与 durvalumab 治疗的肺癌患者的临床结果/特征相关的特性,以阐明
该网络的临床预后特征还可将 SARS-CoV-2 感染患者与健康捐赠者进行分类。
此外,基于单细胞RNA测序的独特特征,我们将对免疫细胞进行分类并研究
T 和 B 细胞对食管和胃食管免疫治疗(CD40 激动剂抗体)的反应
交界癌患者。此外,我们将通过整合拟议的生物信息学软件来开发生物信息学软件
以翻译方式解决免疫测序数据复杂性的方法和技术
提供具有用户友好的可视化工具的综合平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Zhang其他文献
Ramanujan-type congruences for overpartitions modulo 3
模 3 过度划分的拉马努金型同余
- DOI:
10.1216/rmj.2020.50.2257 - 发表时间:
2020 - 期刊:
- 影响因子:0.8
- 作者:
Li Zhang - 通讯作者:
Li Zhang
Li Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Zhang', 18)}}的其他基金
Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
- 批准号:
10651683 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
- 批准号:
10490312 - 财政年份:2021
- 资助金额:
$ 35.24万 - 项目类别:
Computational approaches to unravel immune receptor sequencing for cancer immunotherapy
揭示癌症免疫治疗免疫受体测序的计算方法
- 批准号:
10305538 - 财政年份:2021
- 资助金额:
$ 35.24万 - 项目类别:
Molecular Mechanism Governing Oxygen Signaling and Heme Regulation by Gis1
Gis1 控制氧信号传导和血红素调节的分子机制
- 批准号:
8770294 - 财政年份:2014
- 资助金额:
$ 35.24万 - 项目类别:
Molecular Mechanism Governing Oxygen Signaling and Heme Regulation by Gis1
Gis1 控制氧信号传导和血红素调节的分子机制
- 批准号:
9059941 - 财政年份:2014
- 资助金额:
$ 35.24万 - 项目类别:
Molecular Mechanism Governing Oxygen Signaling and Heme Regulation by Gis1
Gis1 控制氧信号传导和血红素调节的分子机制
- 批准号:
9072488 - 财政年份:2014
- 资助金额:
$ 35.24万 - 项目类别:
An Oxygen-Sensing Network Involving Heme and Chaperones
涉及血红素和伴侣的氧传感网络
- 批准号:
7901855 - 财政年份:2009
- 资助金额:
$ 35.24万 - 项目类别:
相似国自然基金
转录因子LeuO激活适应性免疫系统CRISPR/Cas防御大肠杆菌自然转化的机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
适应性免疫系统的发育和应答
- 批准号:
- 批准年份:2020
- 资助金额:400 万元
- 项目类别:国家杰出青年科学基金
肠道共生细菌与七鳃鳗可变淋巴细胞受体VLRA、VLRC交联对话( Cross-talk)机制研究
- 批准号:31500106
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
不同年龄牦牛免疫系统发育特征及其对高原环境的适应机制
- 批准号:31572478
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Transmission of CoV-2 and the Impact of Spike Protein Evolution
CoV-2 的传播和刺突蛋白进化的影响
- 批准号:
10587954 - 财政年份:2023
- 资助金额:
$ 35.24万 - 项目类别:
Investigation of the landscape of immunosequencing and its clinical relevance through novel immunoinformatic approaches
通过新型免疫信息学方法研究免疫测序的前景及其临床相关性
- 批准号:
10651683 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Combined adjuvant approaches for enhancement of SARS-CoV-2 vaccine efficacy
增强 SARS-CoV-2 疫苗功效的联合佐剂方法
- 批准号:
10361957 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别:
Combined adjuvant approaches for enhancement of SARS-CoV-2 vaccine efficacy
增强 SARS-CoV-2 疫苗功效的联合佐剂方法
- 批准号:
10631993 - 财政年份:2022
- 资助金额:
$ 35.24万 - 项目类别: