Mechanisms and functions of Drosophila motoneuron dendritic shape development
果蝇运动神经元树突形状发育的机制和功能
基本信息
- 批准号:8874766
- 负责人:
- 金额:$ 22.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAfferent NeuronsAnimalsArchitectureBehaviorBiological ModelsBrainCalciumCellsComplexCuesCyclic AMP-Dependent Protein KinasesDatabasesDefectDendritesDevelopmentDiseaseDrosophila genusEnsureFragile X SyndromeGeneticGenetic ModelsGrowthHumanImageIndividualKnowledgeLengthLifeMechanoreceptorsMediatingModelingMolecularMorphologyMotor NeuronsNatureNerve DegenerationNeuraxisNeurodegenerative DisordersNeuronsNeuropilPatternPhenotypeProcessRecords ControlsRegulationRoleShapesSignal PathwaySignal TransductionStagingStructureSynapsesSystemTest ResultTestingTreesbasecell typecellular imagingflygenetic manipulationinformation processinginsightneural circuitneuron developmentnovelpatch clamppostsynapticpostsynaptic neuronspresynapticpresynaptic neuronsresearch studyresponsesuccesssynaptogenesistool
项目摘要
DESCRIPTION (provided by applicant): The brains of all animals are composed out of individual neurons with cell type specific morphologies. The remarkably diverse dendritic architecture of neurons determines two fundamental aspects of neural circuitry: First, it dictates which presynaptic neurons can contact the postsynaptic dendritic arbor. Second, it affects the summation and computation of synaptic input in the postsynaptic dendritic arbor. Consequently, healthy brain function relies on the correct development of dendritic structure, and dendritic architecture defects have been associated with a number of neurodegenerative diseases, such as Rett- and Fragile-X Syndrome. Identifying the molecular mechanisms that regulate dendritic architecture development and synapse placement on dendritic arbors is imperative to understanding neural circuit development in the healthy and in the diseased brain. Despite recent success in identifying key molecular mechanisms regulating dendritic arbor development, our knowledge on the functional consequences of dendritic architecture mis-regulation for synaptic partner matching and for synaptic input processing in the postsynaptic neuron remains fragmentary. This study aims to unravel molecular mechanisms underlying specific aspects of dendritic architecture development as well as the functional consequences of false regulation. During development dendritic structure is regulated by innate genetic factors, guidance cues, humoral cues, and by neuronal activity. Although some of these signals may be integrated by similar intracellular signaling pathways, different signals can independently affect various dendritic features in the same neuron, such as dendritic branch lengths and numbers, dendritic territory borders, and the correct spacing of dendritic arbors within their territories. During recent years, fundamental new insights into the molecular mechanisms that control dendritic self-avoidance and tiling, and thereby correct dendritic arbor spacing, have come from the Drosophila genetic model system. However, it remains largely unclear how these mechanisms interact with synaptic partner matching during circuit assembly in the central nervous system. Therefore, the proposed experiments will test how dendritic self-avoidance mechanisms interact with central synapse formation during dendritic arbor development of Drosophila motoneurons. A quantitative database on control motoneuron dendritic architecture features will serve as bedrock for testing the roles of key molecules mediating dendritic repulsion by targeted genetic manipulation. In addition, we have identified sensory neurons that synapse onto these motoneurons, allowing one to test for functional interactions between dendritic repulsion and synaptic partner matching during dendritic arbor growth. Furthermore, correct and false dendritic architecture regulation will be related to neuronal function by computational approaches and electrophysiological recordings in control and genetically manipulated animals. We expect to gain novel insight into the regulation of dendritic arbor architecture during development as well as into the functional consequences of dendritic arbor defects in mature neurons.
描述(由申请人提供):所有动物的大脑均由具有细胞类型特定形态的单个神经元组成。神经元极其多样化的树突结构决定了神经回路的两个基本方面:首先,它决定了哪些突触前神经元可以接触突触后树突乔木。其次,它影响突触后树突乔木中突触输入的求和和计算。因此,健康的大脑功能依赖于树突结构的正确发育,而树突结构缺陷与许多神经退行性疾病有关,例如雷特-X 综合征和脆性 X 综合征。确定调节树突结构发育和树突轴上突触放置的分子机制对于了解健康和患病大脑的神经回路发育至关重要。尽管最近成功地确定了调节树突乔木发育的关键分子机制,但我们对树突结构错误调节对突触伙伴匹配和突触后神经元突触输入处理的功能后果的了解仍然是零散的。 这项研究旨在揭示树突结构发育特定方面的分子机制以及错误调节的功能后果。在发育过程中,树突结构受到先天遗传因素、引导线索、体液线索和神经元活动的调节。尽管其中一些信号可能通过类似的细胞内信号传导途径整合,但不同的信号可以独立影响同一神经元中的各种树突特征,例如树突分支长度和数量、树突区域边界以及树突乔木在其区域内的正确间距。近年来,果蝇遗传模型系统对控制树突自我回避和平铺从而纠正树突乔木间距的分子机制有了基本的新见解。然而,目前尚不清楚这些机制如何在中枢神经系统的电路组装过程中与突触伙伴匹配相互作用。因此,所提出的实验将测试果蝇运动神经元树突乔木发育过程中树突自我回避机制如何与中央突触形成相互作用。关于控制运动神经元树突结构特征的定量数据库将作为通过有针对性的基因操作测试介导树突排斥的关键分子的作用的基础。此外,我们还确定了突触到这些运动神经元上的感觉神经元,从而可以测试树突乔木生长过程中树突排斥和突触伙伴匹配之间的功能相互作用。此外,通过控制和基因操纵动物的计算方法和电生理记录,正确和错误的树突结构调节将与神经元功能相关。我们期望对发育过程中树突状乔木结构的调节以及成熟神经元中树突状乔木缺陷的功能后果获得新的见解。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dendrites are dispensable for basic motoneuron function but essential for fine tuning of behavior.
树突对于基本运动神经元功能来说是可有可无的,但对于行为的微调至关重要。
- DOI:
- 发表时间:2014-12-16
- 期刊:
- 影响因子:11.1
- 作者:Ryglewski, Stefanie;Kadas, Dimitrios;Hutchinson, Katie;Schuetzler, Natalie;Vonhoff, Fernando;Duch, Carsten
- 通讯作者:Duch, Carsten
Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material.
突触伙伴的神经元内竞争节省了树突构建材料的数量。
- DOI:
- 发表时间:2017-02-08
- 期刊:
- 影响因子:16.2
- 作者:Ryglewski, Stefanie;Vonhoff, Fernando;Scheckel, Kathryn;Duch, Carsten
- 通讯作者:Duch, Carsten
Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion.
瞬时 BK 外向电流增强果蝇幼虫运动过程中的运动神经元放电率。
- DOI:
- 发表时间:2015-11-15
- 期刊:
- 影响因子:0
- 作者:Kadas, Dimitrios;Ryglewski, Stefanie;Duch, Carsten
- 通讯作者:Duch, Carsten
Sequential acquisition of cacophony calcium currents, sodium channels and voltage-dependent potassium currents affects spike shape and dendrite growth during postembryonic maturation of an identified Drosophila motoneuron.
顺序获取不和谐的钙电流、钠通道和电压依赖性钾电流会影响已确定的果蝇运动神经元的胚胎后成熟过程中的尖峰形状和树突生长。
- DOI:
- 发表时间:2014-05
- 期刊:
- 影响因子:0
- 作者:Ryglewski, Stefanie;Kilo, Lukas;Duch, Carsten
- 通讯作者:Duch, Carsten
Dscam1 is required for normal dendrite growth and branching but not for dendritic spacing in Drosophila motoneurons.
Dscam1 是果蝇运动神经元正常树突生长和分支所必需的,但不是树突间距所必需的。
- DOI:
- 发表时间:2014-01-29
- 期刊:
- 影响因子:0
- 作者:Hutchinson, Katie M;Vonhoff, Fernando;Duch, Carsten
- 通讯作者:Duch, Carsten
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STUART J NEWFELD其他文献
STUART J NEWFELD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STUART J NEWFELD', 18)}}的其他基金
Comprehensive Resource for the Drosophila 4th chromosome
果蝇第四染色体综合资源
- 批准号:
10625841 - 财政年份:2020
- 资助金额:
$ 22.54万 - 项目类别:
Comprehensive Resource for the Drosophila 4th chromosome
果蝇第四染色体综合资源
- 批准号:
10491507 - 财政年份:2020
- 资助金额:
$ 22.54万 - 项目类别:
Comprehensive Resource for the Drosophila 4th chromosome
果蝇第四染色体综合资源
- 批准号:
10412965 - 财政年份:2020
- 资助金额:
$ 22.54万 - 项目类别:
Resource for marking clones on the fly 4th chromosome
用于在第四条染色体上标记克隆的资源
- 批准号:
9372952 - 财政年份:2017
- 资助金额:
$ 22.54万 - 项目类别:
Graduate and Undergraduate Training in Biomedicine at ASU
亚利桑那州立大学生物医学研究生和本科生培训
- 批准号:
8610326 - 财政年份:2012
- 资助金额:
$ 22.54万 - 项目类别:
Graduate and Undergraduate Training in Biomedicine at ASU
亚利桑那州立大学生物医学研究生和本科生培训
- 批准号:
8437165 - 财政年份:2012
- 资助金额:
$ 22.54万 - 项目类别:
Graduate and Undergraduate Training in Biomedicine at ASU
亚利桑那州立大学生物医学研究生和本科生培训
- 批准号:
8795196 - 财政年份:2012
- 资助金额:
$ 22.54万 - 项目类别:
Graduate and Undergraduate Training in Biomedicine at ASU
亚利桑那州立大学生物医学研究生和本科生培训
- 批准号:
8214428 - 财政年份:2012
- 资助金额:
$ 22.54万 - 项目类别:
Mechanisms and functions of Drosophila motoneuron dendritic shape development
果蝇运动神经元树突形状发育的机制和功能
- 批准号:
8288702 - 财政年份:2011
- 资助金额:
$ 22.54万 - 项目类别:
Mechanisms and functions of Drosophila motoneuron dendritic shape development
果蝇运动神经元树突形状发育的机制和功能
- 批准号:
8686090 - 财政年份:2011
- 资助金额:
$ 22.54万 - 项目类别:
相似国自然基金
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高尿酸调控TXNIP驱动糖代谢重编程影响巨噬细胞功能
- 批准号:82370895
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
倒装芯片超声键合微界面结构演变机理与影响规律
- 批准号:52305599
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
寒地城市学区建成环境对学龄儿童心理健康的影响机制与规划干预路径研究
- 批准号:52378051
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
原位研究聚变燃料纯化用Pd-Ag合金中Ag对辐照缺陷演化行为的影响及其相互作用机制
- 批准号:12305308
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a phenotypic screening assay for novel compounds that inhibit peripheral pain-sensing neurons
开发抑制外周痛觉神经元的新型化合物的表型筛选试验
- 批准号:
10650640 - 财政年份:2023
- 资助金额:
$ 22.54万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 22.54万 - 项目类别:
Role for novel ventral tegmental area neuromedin S neurons in morphine responses
新型腹侧被盖区神经调节素 S 神经元在吗啡反应中的作用
- 批准号:
10739543 - 财政年份:2023
- 资助金额:
$ 22.54万 - 项目类别: