Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
基本信息
- 批准号:10442703
- 负责人:
- 金额:$ 105.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiological ProcessCRISPR screenCellsCellular Metabolic ProcessDendritic CellsDevelopmentFRAP1 geneFoundationsGoalsHeterogeneityHomeostasisImmuneImmune signalingImmunityImmunologyImmunooncologyInflammationLinkMalignant Childhood NeoplasmMalignant NeoplasmsMetabolicMetabolic ControlMetabolic PathwayMetabolismNutrientPathway interactionsPositioning AttributePrincipal InvestigatorProcessProgram DescriptionProteomicsResearchSignal TransductionSystemSystems BiologyT-LymphocyteT-Lymphocyte SubsetsTestingTherapeuticTissuesTumor ImmunityWorkadaptive immune responsebench-to-bedside translationcancer immunotherapycancer therapyclinical developmentclinical translationexperiencehuman diseaseimmune functionimprovedin vivoinnovationinsightinterdisciplinary approachnovelpre-clinicalprogramsrapid growthrefractory cancerstemnesstumor microenvironment
项目摘要
Program Description/Abstract
Metabolism is the core process underlying essentially all biological functions. The goal of our research program
is to discover the mechanisms linking the metabolic state of immune cells with tissue homeostasis and
antitumor immunity, and to use these insights for development of better cancer treatments. We approach these
questions by integrating hypothesis-driven and systems immunology approaches, and our work has produced
innovation in three main areas. First, we revealed the principle of metabolic reprogramming for T cell fate, state
and tolerance. Our earlier findings in metabolic control of T cell fate and state, including T cell subset-specific
requirement of Warburg metabolism and mTOR signaling, contributed to the foundation and rapid growth of the
immunometabolism field. More recently, we identified metabolic heterogeneity in vivo that underlies T cell fate
between stemness and terminal differentiation in tumor microenvironment and inflammation, and the cycle of
metabolic quiescence and quiescence exit in immune development and function. Second, we defined
mechanisms of nutrient and immune signaling. We identified how nutrient and autophagic signals serve as
potent regulators of cellular metabolism, and how dendritic cell-derived immune and metabolic signals are
integrated by T cells. Third, we combined the traditional hypothesis-driven or ‘reductionist’ approach with
systems biology principles, including in-house development of network algorithm NetBID, pooled in vivo
CRISPR screening and systems proteomics, which led to the identification of new concepts and ‘hidden
drivers’ in immunometabolism that cannot be surmised from simpler systems. More importantly, these
approaches enabled the discovery of novel immuno-oncology targets with a clear path to clinical translation
into innovative therapeutics for pediatric cancers. Our systems immunology strategies provide functionally-
relevant discovery platforms to support future research in metabolic control of immunity and cancer.
Specifically, the future research program will address three fundamental questions in immunometabolism and
antitumor immunity, by testing the central hypothesis that immunometabolic pathways are inextricably
connected to the mechanisms of adaptive immune responses and antitumor immunity; by understanding these
connections, we gain new targets for the treatment of cancer: 1) How are nutrient signals sensed and
integrated by immune cells? 2) How can immunometabolism be rewired to improve antitumor immunity? 3)
Can we break metabolic barriers to cancer immunity and therapy, especially in therapeutically-resistant
cancers? We will focus on T cells, the cornerstone for cancer immunotherapy, to gain in-depth insights, but we
anticipate the findings can be tested and extended into other immune cells. Our experience in the application
of multidisciplinary approaches, combined with our new development and use of novel preclinical and human
disease systems for cancer immunotherapy, makes us uniquely positioned to produce fundamental discoveries
in immunometabolism and clinical translation for cancer treatments by reprogramming metabolic pathways.
项目描述/摘要
新陈代谢是所有生物功能的核心过程,也是我们研究计划的目标。
是发现免疫细胞代谢状态与组织稳态之间的联系机制
抗肿瘤免疫力,并利用这些见解来开发更好的癌症治疗方法。
通过整合假设驱动和系统免疫学方法来提出问题,我们的工作产生了
首先,我们揭示了T细胞命运、状态的代谢重编程原理。
我们早期在 T 细胞命运和状态的代谢控制方面的发现,包括 T 细胞亚群特异性。
Warburg 代谢和 mTOR 信号传导的需求,促成了
最近,我们发现了 T 细胞命运的体内代谢异质性。
肿瘤微环境和炎症的干性和终末分化之间的关系,以及循环
其次,我们定义了代谢静止和免疫发育和功能静止。
我们确定了营养和自噬信号如何发挥作用。
细胞代谢的有效调节剂,以及树突状细胞衍生的免疫和代谢信号如何发挥作用
第三,我们将传统的假设驱动或“还原论”方法与T细胞结合起来。
系统生物学原理,包括内部开发的网络算法 NetBID,在体内汇集
CRISPR 筛选和系统蛋白质组学,导致新概念和“隐藏的”的识别
免疫代谢中的驱动因素无法从更简单的系统中推测出来。
方法使新的免疫肿瘤学靶点的发现成为可能,并为临床转化提供了明确的途径
我们的系统免疫学策略提供了功能性的创新疗法。
相关的发现平台,以支持免疫和癌症代谢控制的未来研究。
具体来说,未来的研究计划将解决免疫代谢和免疫代谢中的三个基本问题
抗肿瘤免疫,通过检验免疫代谢途径密不可分的中心假设
通过了解这些与适应性免疫反应和抗肿瘤免疫的机制相关;
联系,我们获得了治疗癌症的新目标:1)如何感知营养信号并
2) 如何重新连接免疫代谢以提高抗肿瘤免疫力?
我们能否打破癌症免疫和治疗的代谢障碍,特别是在治疗耐药的情况下
我们将重点关注癌症免疫疗法的基石 T 细胞,以获得深入的见解,但我们
预计这些发现可以被测试并扩展到其他免疫细胞中。
多学科方法,结合我们新开发和使用的新型临床前和人类
癌症免疫治疗的疾病系统,使我们处于独特的地位,能够产生根本性的发现
通过重新编程代谢途径来进行癌症治疗的免疫代谢和临床转化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hongbo Chi其他文献
Hongbo Chi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hongbo Chi', 18)}}的其他基金
Enabling immunotherapy for high-risk Group 3 medulloblastoma via systems immunology
通过系统免疫学对高危 3 组髓母细胞瘤进行免疫治疗
- 批准号:
10714138 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别:
Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
- 批准号:
10299800 - 财政年份:2021
- 资助金额:
$ 105.55万 - 项目类别:
2020 Immunometabolism in Health and Disease GRC
2020 健康与疾病中的免疫代谢 GRC
- 批准号:
9912281 - 财政年份:2021
- 资助金额:
$ 105.55万 - 项目类别:
Integrating systems immunology with immunometabolism and cancer immunity
将系统免疫学与免疫代谢和癌症免疫相结合
- 批准号:
10657475 - 财政年份:2021
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10020901 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10687027 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10466976 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
10231172 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Bidirectional metabolic signaling in follicular helper T cell differentiation
滤泡辅助 T 细胞分化中的双向代谢信号
- 批准号:
9917280 - 财政年份:2019
- 资助金额:
$ 105.55万 - 项目类别:
Regulation of TH17 plasticity and stemness by mTORC1
mTORC1 对 TH17 可塑性和干性的调节
- 批准号:
10208040 - 财政年份:2018
- 资助金额:
$ 105.55万 - 项目类别:
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 105.55万 - 项目类别: