Hydrogen Embrittlement Protection Coating (HEPCO)

氢脆保护涂层 (HEPCO)

基本信息

  • 批准号:
    10075545
  • 负责人:
  • 金额:
    $ 40.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Collaborative R&D
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

**Hydrogen** is considered a fundamental energy vector to achieve net zero emissions by 2050, as reflected both by UK and EU government policies. However, use of hydrogen brings significant material challenges, with **hydrogen embrittlement (HE)** being the most critical. Development of innovative Hydrogen Embrittlement Protection Coating is a collaborative effort of UK and German material science companies and research institutions to provide Hydrogen economy with an enabling technology to prevent failures of metal components caused by HE. Currently prevention of HE is sought through selection of special, often expensive metal alloys that have reduced level of HE. That is negatively reflected in the cost of the components and limits areas of hydrogen application. Alternative approach to prevent HE is application of Hydrogen Permeation Barrier (HPB) coatings. Although some commercial HPBs exist, they are limited to niche applications (e.g., H2 bottles) and are often kept as trade secret. It is known however that often-used HPBs are based on Gold (Au, very expensive) and Cadmium (Cd, toxic). UK company Cambridge Nanolitic Limited (CNL) developed an innovative technology for building protective ceramic layers on metal components by a proprietary environmentally friendly electro-chemical oxidation (ECO) technology. ECO coating has been successfully commercialised in automotive, packaging, textile, and electronic industries as corrosion- and wear- resistant protective coatings superior to competing state of the art technologies of anodising, plasma sprayed ceramic, PVD and Plasma Electrolytic Oxidation. ECO coating is a densely packed nanocrystalline aluminium oxide layer atomically bonded to aluminium substrate. Due to nanocrystalline structure it is resistant to thermal and mechanical deformations.Adaptation of CNL technology for hydrogen application will be made by enhancing the structure of nanoceramic oxide layer. Aluminium oxide is known to be a perfect HPB material. Hydrogen permeation resistance would be further enhanced through sealing of ECO ceramic by appropriate media.German company NTTF has a successful experience in developing barrier coatings for various materials including Alumina. NTTF has capacities and skills to development optimal topcoat sealing for ECO ceramic to build a combined coating with efficient HPB properties.Characterisation of novel HPB coatings will be conducted by The Max Planck Institute of Iron Research (Germany) and Cranfield University (UK). The project is believed to bring both academic and applied scientific contribution in understanding Hydrogen Embrittlement processes resulting in an efficient HE protection technology.
**氢**被认为是到2050年净零排放量的基本能量向量,这是英国和欧盟政府政策所反映的。但是,使用氢会带来重大的物质挑战,而**氢含水(HE)**是最关键的。创新的氢植入保护保护涂层的开发是英国和德国材料科学公司和研究机构的协作努力,以为氢经济提供有能力的技术,以防止HE引起的金属组件故障。目前,通过选择降低HE水平的特殊昂贵的金属合金来寻求预防HE。这是负面反映在组件的成本和限制施用氢的领域的。防止他的替代方法是氢渗透屏障(HPB)涂层的应用。尽管存在一些商业HPB,但它们仅限于利基应​​用程序(例如H2瓶),并且通常保存为商业秘密。然而,众所周知,通常使用的HPB基于黄金(AU,非常昂贵)和镉(CD,有毒)。英国公司Cambridge Nanolitic Limited(CNL)开发了一种创新技术,可通过专有环境友好的电力化学氧化(ECO)技术在金属组件上建造保护性陶瓷层。生态涂层已成功地在汽车,包装,纺织品和电子工业中成功商业化,作为腐蚀和耐磨性的保护涂层,优于阳极阳极,血浆喷涂陶瓷,PVD和等离子体电解氧化的竞争状态。生态涂料是一种密集的纳米晶氧化铝氧化铝层原子与铝底物粘合。由于纳米晶体结构,它具有对热和机械变形的抗性。通过增强纳米氧化物氧化物层的结构,将对施用氢的CNL技术进行适应。已知氧化铝是完美的HPB材料。适当的介质将通过密封生态陶瓷的密封将进一步增强氢的耐药性。GermanCompany NTTF在开发包括氧化铝在内的各种材料的屏障涂层方面具有成功的经验。 NTTF具有开发Eco Ceramic的最佳面漆密封的能力和技能,以建造有效的HPB特性。新型HPB涂层的特征将由Max Planck Iron Research(德国)和Cranfield University(英国)进行。据信该项目在理解氢含水过程方面具有学术和应用科学贡献,从而有效地保护了他。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship

相似国自然基金

基于反向散射的主被动互惠安全理论与方法研究
  • 批准号:
    62302185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
喜马拉雅-横断山冰缘带“温室植物”——塔黄与传粉蕈蚊互惠关系的地理变异及其进化机制
  • 批准号:
    32371702
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“时空信息”处理机制下综合直接互惠和空间互惠的合作演化机理研究
  • 批准号:
    72371052
  • 批准年份:
    2023
  • 资助金额:
    41.00 万元
  • 项目类别:
    面上项目
三维肿瘤多细胞团生长和侵袭与细胞体积变化间的互惠调控机制
  • 批准号:
    12372319
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
国家公园内道路干扰对鸟类-植物互惠关系网络的影响机制研究——以神农架国家公园为例
  • 批准号:
    32301589
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Zero Embrittlement H2 Tank Coating Testing ( Phase 3 )
零脆化氢气储罐涂层测试(第 3 阶段)
  • 批准号:
    10106846
  • 财政年份:
    2024
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Launchpad
Coating network and barrier property design strategies, for protection against hydrogen embrittlement
涂层网络和阻隔性能设计策略,以防止氢脆
  • 批准号:
    2902353
  • 财政年份:
    2024
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
Fabrication of 5xxx/7xxx Crossover Alloys: T-Phase Precipitation to Achieve Hydrogen Embrittlement Resistance
5xxx/7xxx 交叉合金的制造:T 相沉淀以实现抗氢脆性
  • 批准号:
    23K04413
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fatigue Characterization of Ultrahigh Strength and Ductile Mg-Gd-Y-Zn-Zr Alloy with Hierarchical Anisotropic Nanostructure
多级各向异性纳米结构超高强韧性Mg-Gd-Y-Zn-Zr合金的疲劳表征
  • 批准号:
    22KF0310
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
New approaches to understanding hydrogen embrittlement in steels
理解钢中氢脆的新方法
  • 批准号:
    2897405
  • 财政年份:
    2023
  • 资助金额:
    $ 40.34万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了