Construction of constant mean curvature surfaces via loop groups and Lorentz geometry

通过环群和洛伦兹几何构造恒定平均曲率曲面

基本信息

  • 批准号:
    23K03081
  • 负责人:
  • 金额:
    $ 3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2023
  • 资助国家:
    日本
  • 起止时间:
    2023-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

井ノ口 順一其他文献

アフィン接続と接触構造に関する話題から
来自与仿射连接和接触结构相关的主题
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口 順一
  • 通讯作者:
    井ノ口 順一
相似幾何によるS字型離散対数型美的曲線の生成法
利用相似几何的S形离散对数美学曲线生成方法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口 順一; 軸丸 芳揮;梶原 健司; 三浦 憲二郎; Schief Wolfgang
  • 通讯作者:
    Schief Wolfgang
対数型美的曲線の相似幾何における平面曲線に対する変分原理による定式化
使用对数美学曲线的相似几何中的平面曲线的变分原理公式
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口 順一; 梶原 健司; 三浦 憲二郎; Schief Wolfgang
  • 通讯作者:
    Schief Wolfgang
アフィン接続と接触構造に関する話題から
来自与仿射连接和接触结构相关的主题
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口 順一
  • 通讯作者:
    井ノ口 順一
1+1 次元の世界: ミンコフスキー平面の幾何
1+1维世界:闵可夫斯基平面的几何
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井ノ口 順一
  • 通讯作者:
    井ノ口 順一

井ノ口 順一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('井ノ口 順一', 18)}}的其他基金

Construction of harmonic maps into hyperbolic space and applications to surface theory in homogeneous spaces
双曲空间调和映射的构建及其在齐次空间表面理论中的应用
  • 批准号:
    19K03461
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
双曲空間内の曲面の無限次元リー群による構成の研究
无限维李群在双曲空间构造曲面的研究
  • 批准号:
    16740029
  • 财政年份:
    2004
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
定曲率空間内の曲面の無限次元リー群による構成の研究
常曲率空间无限维李群构造曲面的研究
  • 批准号:
    14740053
  • 财政年份:
    2002
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

反ド・ジッター空間における曲面論と普遍タイヒミュラー理論との相互的研究
反德西特空间中曲面理论与普适Teichmuller理论的相互研究
  • 批准号:
    20K14306
  • 财政年份:
    2020
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of harmonic maps into hyperbolic space and applications to surface theory in homogeneous spaces
双曲空间调和映射的构建及其在齐次空间表面理论中的应用
  • 批准号:
    19K03461
  • 财政年份:
    2019
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
保型形式とスペクトル解析
自守形式和谱分析
  • 批准号:
    18J20157
  • 财政年份:
    2018
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
無限型リーマン面間の擬等角同値性について
无限黎曼曲面之间的伪共形等价
  • 批准号:
    16J02185
  • 财政年份:
    2016
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Construction of harmonic maps into non-compact symmetric spaces via loop groups and applications to surface theory
通过环群将调和映射构造为非紧对称空间及其在表面理论中的应用
  • 批准号:
    15K04834
  • 财政年份:
    2015
  • 资助金额:
    $ 3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了