不変式論的観点からの複素鏡映群の平坦構造の研究
不变性理论视角下复反射群平面结构研究
基本信息
- 批准号:23K03099
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2023
- 资助国家:日本
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
三鍋 聡司其他文献
三鍋 聡司的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
E-多項式と複素鏡映群の新展開
E多项式和复反射群的新进展
- 批准号:
24K06827 - 财政年份:2024
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariant Schubert calculus for p-compact groups
p-紧群的等变舒伯特微积分
- 批准号:
23K03092 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K3曲面の周期と鏡映群の不変式による保型形式の研究
利用K3面周期性和反射群不变公式研究自守形式
- 批准号:
22K03226 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lefschetz properties of commutative algebras generated by relative invariants of prehomogeneous vector spaces
由预齐次向量空间的相对不变量生成的交换代数的 Lefschetz 性质
- 批准号:
22K03347 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
K3 modular functions and hypergeometric period differential equations
K3模函数和超几何周期微分方程
- 批准号:
19K03396 - 财政年份:2019
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)