Center of Excellence for High Throughput Proteogenomic Characterization
高通量蛋白质组表征卓越中心
基本信息
- 批准号:10438235
- 负责人:
- 金额:$ 108.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAlgorithmsAntigensBindingBiocompatible MaterialsBiologicalBiological AssayBiologyCancer BiologyCancer ModelCancer VaccinesCell CommunicationCellsClinicalClinical TreatmentCollaborationsCommunitiesComplexCore BiopsyDNADNA copy numberDataData AnalysesData SetDevelopmentDevicesDrug TargetingFunctional disorderGenomeGenomicsGoalsGuidelinesHLA AntigensHistocompatibility Antigens Class IHumanImmunologyInstitutesIntelligenceInternationalInvestigationLabelLibrariesLightLinkLiteratureLocationMachine LearningMalignant NeoplasmsMass Spectrum AnalysisMeasurementMeasuresMethodsMolecularMutationOncogenicOrganoidsPathway interactionsPatientsPeptidesPharmacotherapyPopulationPost Translational Modification AnalysisPost-Translational Protein ProcessingProteinsProteomeProteomicsPublishingQuantitative EvaluationsReagentResearchSamplingSignal TransductionSiteSpecificityStable Isotope LabelingStandardizationTechnologyTherapeutic InterventionTimeTissuesTranslationsTumor AntigensTumor EscapeTumor-infiltrating immune cellsVariantanticancer researchantigen processingarmbasebioinformatics toolcancer cellcancer therapycancer typedata acquisitiondrug developmentepigenomicsgenomic dataimmunogenicityimprovedinnovationinsightinstrumentmetabolomicsmultidisciplinarymultiplex assayneoantigensneoplastic cellnew technologynew therapeutic targetnovelpatient derived xenograft modelphotonicspre-clinicalprediction algorithmprogramsproteogenomicsrare cancertranscriptomicstranslational impacttumortumor heterogeneity
项目摘要
Project Summary
Cancer proteogenomics encompasses methods that integrate mass spectrometry (MS)-based measurements
of protein abundance and post-translational modifications (PTMs) with genomic, epigenomic, and transcriptomic
data from preclinical cancer models and tumor samples. The multidisciplinary Proteogenomic Characterization
Center we propose will employ a range of state-of-the-art MS-based proteomic and metabolomic technologies
to systematically generate and integrate high quality, comprehensive and quantitative proteomic and
metabolomic data with genomic data. Our overarching goals are to leverage the integrated data to identify
signatures of cancer drivers, detect signaling network adaptations and provide information on PTMs that affect
cellular signaling, molecular complex formation, and protein location, translation and stability in human
biospecimens and relevant models of cancer. Peptidomes of the class I and II human leukocyte antigens (HLA)
of the tumors will also be analyzed to shed light on tumor-immune escape mechanisms and antigen processing
in cancer, improve algorithms for prediction of antigen display and immunogenicity and inform development of
personalized cancer vaccines. We hypothesize that integrating deep, high quality, quantitative proteomic and,
especially, PTM-omic, HLA-peptidomic and metabolomic data with genomic and transcriptomic data will provide
novel insights into the pathophysiology of cancer and help to identify new, actionable targets for drug
development and treatment. Data will be rapidly distributed to the cancer biology and clinical communities, as
we have done for the past 15 years in the NCI-CPTAC program. The resulting datasets will enable a broad range
of investigation by many teams, accelerating molecularly-oriented cancer research toward biological and clinical
impact. We will also systematically develop and apply high sensitivity targeted MS assays to peptide/protein
targets identified in the Discovery Arm, with an emphasis on posttranslationally-modified peptides in signaling
cascades, oncogenic pathway regulators and effectors, and druggable proteins. Assays will use stable isotope-
labeled standards for unambiguous identification and quantification and follow Tier 2 guidelines developed from
the community-based effort led by the Broad proteomics team. Existing technologies will be further developed
and automated to enable comprehensive analysis of rare tumor cell populations, to evaluate tumor
heterogeneity, to increase depth and breadth of post-translational modification analysis, and to improve depth,
reliability and repeatability of peptide identification and quantification in general by intelligent data acquisition.
项目概要
癌症蛋白质基因组学包括整合基于质谱 (MS) 的测量的方法
通过基因组、表观基因组和转录组研究蛋白质丰度和翻译后修饰 (PTM)
来自临床前癌症模型和肿瘤样本的数据。多学科蛋白质组表征
我们建议该中心将采用一系列最先进的基于 MS 的蛋白质组学和代谢组学技术
系统地产生和整合高质量、全面和定量的蛋白质组学和
代谢组数据与基因组数据。我们的总体目标是利用集成数据来识别
癌症驱动因素的特征,检测信号网络适应并提供影响 PTM 的信息
人类细胞信号传导、分子复合物形成以及蛋白质定位、翻译和稳定性
生物样本和相关癌症模型。 I 类和 II 类人类白细胞抗原 (HLA) 的肽组
还将分析肿瘤的结构,以揭示肿瘤免疫逃逸机制和抗原加工
在癌症中,改进预测抗原展示和免疫原性的算法,并为开发提供信息
个性化癌症疫苗。我们假设整合深度、高质量、定量的蛋白质组学,
特别是,PTM-组学、HLA-肽组学和代谢组学数据以及基因组和转录组学数据将提供
对癌症病理生理学的新见解,有助于确定新的、可行的药物靶点
发展和治疗。数据将迅速分发给癌症生物学和临床界,因为
过去 15 年我们在 NCI-CPTAC 项目中所做的工作。由此产生的数据集将实现广泛的
多个团队的共同研究,加速分子导向的癌症研究向生物学和临床方向发展
影响。我们还将系统地开发和应用针对肽/蛋白质的高灵敏度靶向 MS 检测
Discovery Arm 中确定的目标,重点是信号传导中的翻译后修饰肽
级联、致癌途径调节剂和效应物以及可药物蛋白。测定将使用稳定同位素-
明确识别和量化的标记标准,并遵循 2 级指南
由 Broad 蛋白质组学团队领导的基于社区的努力。现有技术将得到进一步发展
并自动化以实现对罕见肿瘤细胞群的全面分析,以评估肿瘤
异质性,增加翻译后修饰分析的深度和广度,并提高深度,
通过智能数据采集进行肽鉴定和定量的可靠性和可重复性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN A CARR其他文献
STEVEN A CARR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN A CARR', 18)}}的其他基金
Proteogenomic Predictors of Recurrence in Non-small Cell Lung Cancer
非小细胞肺癌复发的蛋白质基因组预测因素
- 批准号:
10459716 - 财政年份:2022
- 资助金额:
$ 108.81万 - 项目类别:
Center of Excellence for High Throughput Proteogenomic Characterization
高通量蛋白质组表征卓越中心
- 批准号:
10643840 - 财政年份:2022
- 资助金额:
$ 108.81万 - 项目类别:
Proteogenomic Predictors of Recurrence in Non-small Cell Lung Cancer
非小细胞肺癌复发的蛋白质基因组预测因素
- 批准号:
10643902 - 财政年份:2022
- 资助金额:
$ 108.81万 - 项目类别:
The 2019 Conference of the United States Human Proteome Organization (US HUPO)
2019年美国人类蛋白质组组织(US HUPO)会议
- 批准号:
9762425 - 财政年份:2019
- 资助金额:
$ 108.81万 - 项目类别:
Mapping protein communication between organs in homeostasis and disease
绘制稳态和疾病中器官之间的蛋白质通讯图
- 批准号:
10434875 - 财政年份:2018
- 资助金额:
$ 108.81万 - 项目类别:
Mapping protein communication between organs in homeostasis and disease
绘制稳态和疾病中器官之间的蛋白质通讯图
- 批准号:
10197922 - 财政年份:2018
- 资助金额:
$ 108.81万 - 项目类别:
Mapping protein communication between organs in homeostasis and disease
绘制稳态和疾病中器官之间的蛋白质通讯图
- 批准号:
9789868 - 财政年份:2018
- 资助金额:
$ 108.81万 - 项目类别:
MICROSCALED PROTEOGENOMICS FOR CANCER CLINICAL TRIALS
用于癌症临床试验的微观蛋白质组学
- 批准号:
9272692 - 财政年份:2017
- 资助金额:
$ 108.81万 - 项目类别:
Deciphering the molecular basis of T1D in human cells using functional genomics
使用功能基因组学解读人类细胞中 T1D 的分子基础
- 批准号:
9228681 - 财政年份:2016
- 资助金额:
$ 108.81万 - 项目类别:
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 108.81万 - 项目类别:
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 108.81万 - 项目类别:
Impact of Medicaid Prescription Cap Policies on Treatment Outcomes for Opioid Use Disorder: A National Mixed Methods Study
医疗补助处方上限政策对阿片类药物使用障碍治疗结果的影响:一项国家混合方法研究
- 批准号:
10637024 - 财政年份:2023
- 资助金额:
$ 108.81万 - 项目类别:
Integration of stepped care for Perinatal Mood and Anxiety Disorders among Women Living with HIV in Kenya
肯尼亚艾滋病毒感染妇女围产期情绪和焦虑障碍的分级护理一体化
- 批准号:
10677075 - 财政年份:2023
- 资助金额:
$ 108.81万 - 项目类别: