Investigating host kinase modulation of erythrocyte deformability during Plasmodium falciparum invasion
研究恶性疟原虫入侵期间红细胞变形能力的宿主激酶调节
基本信息
- 批准号:10431764
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:ActinsActomyosinAffectAnemiaAnkyrinsAntimalarialsApicalBiologyBloodCSNK2A1 geneCellsCellular biologyCommunicationCommunitiesComplexCulicidaeCytolysisCytoskeletonDataData AnalysesData SetDevelopmentDiseaseDrug TargetingDrug resistanceErythrocytesFDA approvedFellowshipFibrosisGeneticGleanHematologic NeoplasmsHematological DiseaseHematologyHemolysisHereditary SpherocytosisHumanIndividualIndustryIntegration Host FactorsKnock-outLeukocytesLife Cycle StagesLigandsMalariaMechanicsMediatingMembraneMentorshipMerozoite Surface Protein 1MorphologyMotorNonmuscle Myosin Type IIAOsmotic Fragility testParasitesParasitologyPathologyPenetrationPharmaceutical PreparationsPhenotypePhosphorylationPhosphotransferasesPlasmodiumPlasmodium falciparumProcessProteinsProteomicsPublic Health SchoolsResearchRoleSYK geneScientistSeriesSignal TransductionSignal Transduction PathwaySpectrinStimulusStreptococcusStructureSurfaceTechnical ExpertiseThrombocytopeniaValidationadducinbeta Spectrincasein kinase IIcell typechemical geneticscostdrug repurposingflexibilitygenetic analysisinhibitor/antagonistinsightkinase inhibitormutantnew therapeutic targetnovelparasite invasionphosphoproteomicsreceptorskill acquisitionsmall molecule inhibitortool
项目摘要
PROJECT SUMMARY/ABSTRACT
Malaria is a devastating disease caused by obligate intracellular Plasmodium parasites that infect millions of
people every year: In 2017 alone, 219 million people were infected by the parasite and 435,000 people were
killed. Every antimalarial deployed to date has been counteracted by cases of drug resistance, highlighting a
desperate need for novel drug targets.Targeting host factors is an underexplored alternative approach to
increasing barriers to drug resistance in malaria. This strategy has the potential to uncover targets required for
multiple Plasmodium species due to overlaps in host requirements. Additionally, many Plasmodium host factors
are already FDA approved drug targets, making a compelling case for drug repurposing.
The red blood cell (RBC) is not a passive bystander during Plasmodium invasion; mounting evidence
suggests the RBC host is co-opted into modifying its own deformability during parasite attachment & invasion to
reduce the energy costs of parasite entry. These changes are driven by phosphorylation of the RBC cytoskeleton.
Host RBC kinases TRPM7, Casein Kinase II (CKII), and Syk are FDA approved drug targets postulated to
phosphorylate the RBC cytoskeleton during P. falciparum invasion. I hypothesize that Plasmodium signaling to
the RBC cytoskeleton during merozoite invasion occurs through these kinases to modulate RBC deformability
and facilitate parasite entry. My preliminary data indicates that P. falciparum invasion efficiency is compromised
in individual RBC knockouts targeting TRPM7, CSNK2A1, and SYK kinases.
Using an integrated genetic, chemical genetic, and phosphoproteomics approach, this proposal seeks to
investigate TRPM7, CKII, and Syk kinase contributions to RBC deformation during P. falciparum invasion,
validate small molecule inhibitors targeting these kinases, and elucidate parasite stimuli and downstream
effectors mediating host kinase signal transduction during P. falciparum invasion. If successful, these studies
will uncover more about the basic biology of Plasmodium invasion, identify promising host targets for drug
repurposing in blood stage malaria, and facilitate the development of broad spectrum antimalarial compounds
with increased barriers to drug resistance. Finally, as many additional hematological disorders are affected by
these kinases—including macrothrombocytopenia & arterial fibrosis (TRPM7), hereditary spherocytosis &
Streptococcus-mediates hemolysis (Syk), and several hematological malignancies (CKII)—insights gleaned
from these functional analyses will benefit both parasitology and hematology communities.
The proposed research will be carried out as part of my doctoral dissertation studies at the Harvard T.H.
Chan School of Public Health. During this fellowship I will acquire & strengthen technical skills including chemical
genetics, parasitology, and proteomics; and fine-tune data analysis, scientific communication, mentorship, and
professional development skills needed to become an independent research scientist in industry.
项目摘要/摘要
疟疾是由专性细胞内质质寄生虫引起的毁灭性疾病,该疾病感染了数百万
每年的人:仅在2017年,就有2.19亿人被寄生虫感染,43.5万人被感染
被杀。迄今为止部署的每种抗疟药都被耐药性案件所抵消,强调了
迫切需要新的药物目标。靶向宿主因素是一种毫无疑问的替代方法
增加疟疾耐药性的障碍。该策略有可能发现目标
由于宿主需求重叠而引起的多个疟原虫物种。此外,许多疟原虫宿主因子
已经是FDA批准的药物靶标,这是一个令人信服的药物重新使用案例。
红细胞(RBC)在疟原虫入侵期间不是被动的旁观者。越野证据
建议RBC主机选择在寄生虫附着和入侵期间修改其自身的可变形性
降低寄生虫进入的能源成本。这些变化是由RBC细胞骨架的磷酸化驱动的。
宿主RBC激酶TRPM7,酪蛋白激酶II(CKII)和SYK是FDA批准的药物靶标
恶性疟原虫入侵期间,磷酸化RBC细胞骨架。我假设疟原虫信号传导
Merozoite入侵期间的RBC细胞骨架通过这些激酶进行调节RBC可变形性
并促进寄生虫进入。我的初步数据表明恶性疟原虫的入侵效率受到损害
在单独的RBC敲除中,靶向TRPM7,CSNK2A1和SYK激酶。
使用综合遗传,化学遗传和磷蛋白质组学方法,该提案试图
研究TRPM7,CKII和SYK激酶对恶性疟原虫入侵期间RBC变形的贡献,
验证针对这些激酶的小分子抑制剂,并阐明寄生虫刺激和下游
在恶性疟原虫入侵期间介导宿主激酶信号转移的效果。如果成功,这些研究
将发现更多有关疟原虫侵袭的基本生物学,确定有希望的宿主靶标的药物
在血液阶段疟疾中重新利用,并支持广谱抗疟疾化合物的发展
具有耐药性障碍的增加。最后,由于许多其他血液学疾病受到
这些激酶 - 包括巨栓细胞减少症和动脉纤维化(TRPM7),遗传性球细胞增多症和
链球菌 - 溶血(SYK)和几个血液学恶性肿瘤(CKII) - 直觉收集
通过这些功能分析将使寄生虫学和血液学群落受益。
拟议的研究将作为我在哈佛T.H.博士学位论文研究的一部分进行。
陈公共卫生学院。在此奖学金期间,我将获得并增强技术技能,包括化学技能
遗传学,寄生虫学和蛋白质组学;以及微调数据分析,科学沟通,精神验证和
专业发展技能需要成为工业领域的独立研究科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrice Valerie Groomes其他文献
Patrice Valerie Groomes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
由actomyosin介导的集体性细胞迁移对唇腭裂发生的影响的研究
- 批准号:82360313
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
丙酮酸激酶催化肌动球蛋白磷酸化调控肉嫩度的分子机制
- 批准号:32372263
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
鱼糜肌动球蛋白的增效转化及其氧化控制分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:59 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Pickering纳米乳液脂质诱导肌动球蛋白凝胶的空间位阻效应及其机制
- 批准号:32172242
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
相似海外基金
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
In utero rescue of cleft palate using maternal administration of folic acid
使用叶酸在子宫内挽救腭裂
- 批准号:
10646021 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别:
Role of the S100 Family of Proteins in Lens Physiology and Cataract
S100 蛋白家族在晶状体生理学和白内障中的作用
- 批准号:
10560827 - 财政年份:2023
- 资助金额:
$ 3.2万 - 项目类别: