Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
基本信息
- 批准号:10439967
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureAreaBehaviorBehavioralBeta RhythmBiophysical ProcessBiophysicsBrainBrain DiseasesCellsCodeCognition DisordersCommunicationComputer ModelsCoupledCuesDataDiseaseElectrophysiology (science)EnvironmentFailureFeedbackFrequenciesFutureGoalsGrantImpairmentImplanted ElectrodesInterruptionKnowledgeLeadLearningMapsMentorsModelingMonkeysNervous System PhysiologyNeuronsParietal LobePeriodicityPrefrontal CortexProbabilityRoleSamplingSensorySignal TransductionSocial InteractionStimulusTestingTheoretical modelTrainingUpdateVisual Cortexarea V4autism spectrum disorderbasecell assemblycognitive functionexpectationexperienceexperimental studyflexibilityinsightmodel buildingnetwork modelsneural circuitneural networkneuromechanismneurophysiologynovel therapeuticsoptogeneticsreceptive fieldrelating to nervous systemsocialtheories
项目摘要
Project Summary
A key cognitive function is expectation. Expectation is thought to be generated through an agent’s experiences and learning. An established theoretical model, predictive coding, states that the brain is constantly building models (signifying changing expectations) of the environment. The brain does this by forming predictions (PD). These predictions interact with incoming sensory data. When the PD matches the sensed data, the expectation is correct. When they do not match, a prediction error (PE) signal is generated. This PE signal is then used to update the prediction, so that the brain’s internal model can more optimally predict future sensory data.
The implications for the predictive coding model are far-reaching. If the model is correct, it would fundamentally shift our understanding of the neural code from one that represents the “state of the environment” (e.g., the classic Hubel and Wiesel receptive field model) to one in which the brain performs “active sensing” and builds internal models of the world, testing them against incoming sensory data. In addition, the predictive coding model has many implications for our understanding of disease states. For example, autism can be understood as a failure in correctly predicting social actions, and as a result, every social interaction is “surprising”.
Various theories exist about how a predictive code could be implemented in the brain. They propose that distinct cortical layers, flow of communication (feedforward/feedback), and oscillatory dynamics are involved in signaling PEs and PDs. However, little neurophysiological data exist to support these models. In the K99 portion of this grant, I manipulated predictions by changing the probabilities associated with objects in a delayed-match-to-sample task (Aim 1). This allowed me to induce expectations of varying strengths. With my primary mentor, Earl Miller, I was trained to perform make multi-area, multi-laminar recordings in monkeys. I then used these data to study how expectations are built and what happens when they are violated. In Aim 2, with my secondary mentor, Nancy Kopell, I used computational modeling to understand how the changing probability of inputs map on to a synchronously firing co-active group of cells (an assembly). We hypothesized that different assemblies represent different predictions. We also hypothesized that the strength of each assembly will represent the probability of a particular stimulus (thereby forming the neural basis of PD). Finally, due to the excitatory-inhibitory loops between cells in an assembly, we investigated whether re-activations of the assembly occur rhythmically, paced by a beta (15-30 Hz) oscillation in deep cortical layers. Gamma oscillations (40-90 Hz) in superficial cortical layers could help switch off the current prediction (PD) by signaling prediction error (PE). In Aim 3, an independent aim that will be my focus during the R00 portion of the grant, I will test whether interrupting beta oscillations (thought to signal PD) with closed-loop optogenetic inhibition is sufficient to disrupt the behavioral and neuronal signatures of prediction. These experiments are poised to significantly contribute to our understanding of predictive coding.
项目摘要
关键的认知功能是cal模型不匹配,生成了预测误差(PE)信号。
对The Model Arel的启示,其中一些代表“环境状态”的代码(经典的Hubel和Wiesel接受场模型,一个Ine Ine Ine Int构建了世界的内部模型,对它们进行了测试,并根据感官数据进行测试。编码模型对我们对疾病状态的理解有许多影响,例如,自闭症可以理解为正确预测社会行为的失败,因此,每种社会互动都是“令人惊讶的”。
各种理论存在于大脑中的预测代码(进料/反馈),而振荡动力学在信号和PDS中。样本任务(AIM 1) ,使用我的次要导师Nancy Kopell,我使用计算模型来了解输入的概率如何映射到同步射击的共同活性群体(一个组件)每个组件的强度将代表特定刺激的概率(从而形成PD的神经基础)。 Hz)通过信号预测误差(PE)在深层皮层中。 )提供了闭环发育,以破坏预测的行为和神经元特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Moraes Bastos其他文献
Andre Moraes Bastos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Moraes Bastos', 18)}}的其他基金
Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
- 批准号:
10649617 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
- 批准号:
10449136 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别:
Testing the Mechanisms, Layers, and Frequencies of Prediction Encoding and its Violation
测试预测编码的机制、层和频率及其违规
- 批准号:
10224537 - 财政年份:2018
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
农产品出口区域化管理对企业和农户的行为决策及经济绩效影响研究
- 批准号:72373067
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
区域压缩对非线性噪声驱动的随机偏微分方程动力学行为影响的研究
- 批准号:12371178
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
城市大型医院周边区域公共服务设施布局及其使用者行为和满意度的影响机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时间变区域上三类发展方程解的长时间动力学行为研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
区域典型水体中天然有机质介导PCPs的环境转化行为与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Dissecting the functional organization of local hippocampal circuits underlying spatial representations
剖析空间表征下局部海马回路的功能组织
- 批准号:
10590363 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Epileptogenic Changes in Local Network Structure Following Injury (Project 2)
损伤后局部网络结构的致癫痫变化(项目 2)
- 批准号:
10713245 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别: