High Resolution Microwave Tomographic Imaging of Brain Strokes Using Low-Frequency Measurements and Deep Neural Networks
使用低频测量和深度神经网络对脑中风进行高分辨率微波断层成像
基本信息
- 批准号:10429133
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAlgorithmsAmbulancesAnatomyAreaBiologicalBrainBrain hemorrhageBrain imagingBreast Cancer DetectionCalibrationCenters for Disease Control and Prevention (U.S.)ClinicalDataData SetDetectionDevelopmentDiagnosisDimensionsEarly treatmentElectromagnetic EnergyElectromagneticsEvaluationEvolutionFrequenciesFutureGoalsHeadHealthHemorrhageHospitalsHourHumanImageIonizing radiationIschemic StrokeKnowledgeMagnetic Resonance ImagingMeasurementMeasuresMethodsModelingMonitorMuslim religionNeurologyNeuronsNoiseOutputPre-hospital settingProcessResearchResolutionRestRiskSafetySiteStrokeStudy SubjectSurvivorsSymptomsSystemTechniquesTestingTimeTissue ModelTissuesTrainingUnited StatesVariantX-Ray Computed Tomographyalgorithm trainingattenuationdeep neural networkdesigndielectric propertydiffuse optical tomographyexpectationhuman old age (65+)human subjectimage reconstructionimaging modalityimaging systemimprovedimproved outcomeinnovationloss of functionmicrowave electromagnetic radiationmortalityneuroimagingnovelreconstructiontomographyvirtual
项目摘要
PROJECT SUMMARY / ABSTRACT
According to the CDC, a stroke occurs in the United States every 40 seconds, with a fatality every 4 minutes
and associated reduction in mobility in more than half of survivors of ages 65 and over. The ability to
differentiate ischemic/hemorrhagic strokes in the pre-hospital setting and to monitor stroke evolution by the
bedside has the great potential to improve outcomes and reduce mortality. Unfortunately, state-of-the-practice
MRI and CT systems are bulky and pricy, restricting imaging to the clinical setting and sparse intervals. CT
also uses ionizing radiation that poses safety risks and further prohibits frequent imaging. Microwave
Tomographic Imaging (MTI) is a promising alternative/complementary option to MRI and CT, but has yet to be
used in the clinical setting. This is mainly due to its poor spatial resolution as feature dimensions are
comparable to the wavelength of the electromagnetic wave. Unfortunately, reducing the wavelength (i.e.,
increasing the measurement frequency) of MTI is not viable as high frequencies are prone to noise and severe
attenuation inside tissues. Instead, our goal is to explore the feasibility of expanding the fundamental limits of
MTI resolution via innovations in estimating high-frequency data from low-frequency measurements using
Deep Neural Networks (DNNs). We target detection of strokes <1cm×1cm that meets clinical expectations for
a much needed addition to the pre-hospital setting and throughout the stroke monitoring process. Hypothesis
1: A relationship exists between the low- and high-frequency data measured around a biological imaging
domain that we can use to ‘artificially’ increase the highest usable frequency for any given low-frequency
measurements. Hypothesis 2: An ‘artificial’ increase in frequency by N times will improve image resolution by N
times, regardless of the MTI reconstruction method used. Here, N depends on the highest usable frequency (to
be determined) and is expected to be at least equal to two. The study is significant because it reveals
previously unknown knowledge for enhancing MTI resolution in biological media. In Aim 1, we will develop the
DNN using 2D/3D solvers, canonical/anatomical head models, and a new class of into-body radiating antennas
with unprecedented efficiency. Our study will validate Hypothesis 1. In Aim 2, we will validate the DNN
numerically by using the estimated high-frequency data to reconstruct the image. Our study will validate
Hypothesis 2. In Aim 3, we will validate the DNN experimentally using tissue-emulating phantoms. Successful
reconstruction will entail improved (N times higher) image resolution vs. state-of-the-art MTI reconstruction at
the same measurement frequency. A comparison of image reconstruction accuracy using actual vs. estimated
high-frequency data will further reveal the method’s efficacy. Feasibility will form the basis of future studies on
human subjects. We envision this technique to be a much needed breakthrough to overcoming the upper
frequency limit of MTI algorithms for various diagnosis and/or pre-hospital assessment applications in brain
stoke applications and beyond.
项目摘要 /摘要
根据疾病预防控制中心的说法,每40秒发生一次中风一次,每4分钟死亡一次
以及超过一半的65岁及以上的生存期间的流动性降低。能力
在院前环境中区分缺血性/出血性中风,并通过监测中风的演变
床边具有改善预后和降低死亡率的巨大潜力。不幸的是,最先进的
MRI和CT系统笨重且昂贵,将成像限制在临床环境和稀疏间隔内。 CT
还使用电离辐射,构成安全风险并进一步禁止经常想象。微波
层析成像(MTI)是MRI和CT的承诺替代/补充选择,但尚未是
在临床环境中使用。这主要是由于其空间分辨率差,因为特征维度为
与电子波的波长相当。不幸的是,降低波长(即
MTI的测量频率的增加是不可行的
组织内部的衰减。相反,我们的目标是探索扩大基本限制的可行性
MTI通过创新解决了使用低频测量估算高频数据的分辨率
深神经网络(DNNS)。我们靶向<1cm×1cm的中风的检测,满足临床期望
在院前环境以及整个中风监测过程中,急需的补充。假设
1:围绕生物成像测量的低频和高频数据之间存在关系
我们可以用来“人工”的域增加了任何给定低频的最高可用频率
测量。假设2:n时频率的“人造”增加将通过n提高图像分辨率
时间,无论使用的MTI重建方法如何。在这里,n取决于最高可用频率(to
可以确定),预计至少等于两个。该研究很重要,因为它揭示了
以前未知的知识来增强生物学培养基中的MTI分辨率。在AIM 1中,我们将开发
DNN使用2D/3D求解器,规范/解剖学头模型和新的一类入内辐射天线
具有前所未有的效率。我们的研究将验证假设1。在AIM 2中,我们将验证DNN
通过使用估计的高频数据来重建图像。我们的研究将验证
假设2。在AIM 3中,我们将使用组织发出的幻象实验验证DNN。成功的
重建将需要改善(较高)图像分辨率与最先进的MTI重建
相同的测量频率。使用实际与估计的图像重建精度的比较
高频数据将进一步揭示该方法的效率。可行性将构成未来研究的基础
人类主题。我们设想这项技术是克服鞋面的急需的突破
用于各种诊断和/或院前评估应用的MTI算法的频率限制
Stoke应用程序及以后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asimina Kiourti其他文献
Asimina Kiourti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Asimina Kiourti', 18)}}的其他基金
High Resolution Microwave Tomographic Imaging of Brain Strokes Using Low-Frequency Measurements and Deep Neural Networks
使用低频测量和深度神经网络对脑中风进行高分辨率微波断层成像
- 批准号:
10641852 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Non-Invasive Wideband Radiometer for Accurate Core Temperature Monitoring
用于精确监测核心温度的非侵入式宽带辐射计
- 批准号:
10194492 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
Non-Invasive Wideband Radiometer for Accurate Core Temperature Monitoring
用于精确监测核心温度的非侵入式宽带辐射计
- 批准号:
10039648 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别: