Biochemical mechanisms of beta cell protection through bromodomain inhibition
通过溴结构域抑制保护 β 细胞的生化机制
基本信息
- 批准号:10427263
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAmino AcidsAnti-Inflammatory AgentsAttenuatedAutoimmune DiabetesAutoimmune DiseasesB Cell ProliferationBeta CellBindingBiochemicalBiologicalBlood GlucoseBromodomainCRISPR/Cas technologyCell DeathCellsChemicalsChildhoodCytoprotectionDNA RepairDataDevelopmentDiabetes MellitusEarly treatmentEpigenetic ProcessFamilyFamily memberGene ExpressionGeneticGenetic TranscriptionGoalsHistonesImmuneImmune systemImmunologicsImpairmentInbred NOD MiceIndividualInflammationInflammation MediatorsInflammatoryInsulinInterleukin-1 betaInterventionIslets of LangerhansLeadLearningLysineMacrophage ActivationMediatingMediator of activation proteinMemoryMitochondriaMolecularMonozygotic twinsNitric OxideOxidative StressPancreasPathway interactionsPatientsPhenotypePopulationProductionProteinsReactionReaderReagentRecoveryRegulationRoleTestingTherapeuticTranscriptional Regulationcell typecytokinedesigneffective therapyimmune system functioninhibitorinnovationinsulinomaisletmacrophagemouse modelnew therapeutic targetnovelnovel therapeuticspatient populationpediatric patientspreventprotective effectresponsetooltranscription factor
项目摘要
PROJECT SUMMARY
Autoimmune diabetes is characterized by an inflammatory reaction in and around pancreatic islets followed by
selective destruction of insulin producing β-cells. Low concordance rates of autoimmune diabetes in
monozygotic twins indicate an important but poorly understood role for epigenetic factors in diabetes initiation
and progression. Bromodomains are epigenetic “readers” of lysine acetylation on histones and transcription
factors; bromodomain binding to acetylated histones/proteins regulates transcription in a cell-type dependent
manner. Early treatment of non-obese diabetic (NOD) mice with an inhibitor of the bromodomain and
extraterminal (BET) family (Brd2-4) was recently shown to suppress development of autoimmune diabetes.
The protective effects of BET inhibition correlated with anti-inflammatory and pro-proliferative phenotypes in
macrophages and β-cells, respectively; however, the mechanisms are poorly understood. We hypothesize that
Brd4 regulates β-cell proliferation and macrophage inflammation in islets, and that inhibition of Brd2 and Brd3
are liabilities of pan-BET inhibitors in autoimmune diseases. Consistent with this hypothesis, pan-BET
inhibition is associated with impaired learning and memory as well as reduced immune system function. As
epigenetic intervention in autoimmune diabetes represents a novel therapeutic target in a primarily pediatric
population, off-target effects must be minimized. Brd4 inhibition as a therapeutic strategy in autoimmune
diabetes will be examined in three specific aims: Aim 1) Test the hypothesis that Brd4 inhibition prevents
macrophage activation and production of inflammatory mediators known to damage β-cells. Studies will build
on our preliminary data showing that pan-BET inhibitors attenuate macrophage production of inflammatory
mediators such as IL-1β and nitric oxide. Aim 2) Test the hypothesis that Brd4 inhibition protects β-cells from
cytokine-mediated damage by stimulating DNA damage repair pathways and protecting mitochondria from
damage. Studies will use insulinoma cells deficient in Brd2, Brd3, and Brd4 and chemical inhibitors to explore
the role of BET proteins in the regulation of β-cell responses to inflammatory mediators and the activation of
defense pathways that facilitate β-cell recovery from oxidative stress. Aim 3) Develop selective Brd4 inhibitors
for effective treatment of autoimmune diabetes. We provide evidence to support our innovative approach to
selectively inhibit Brd4 using covalent targeting of a specific amino acid residue unique to Brd4. Biochemical,
molecular, immunological, cell biological, genetic, and chemical biological approaches will be used to
investigate the molecular and cellular pathways through which BET inhibition protects β-cells and to develop
novel tools and reagents to selectively target the BET family of transcriptional regulators. Our long-term goals
are to elucidate the cell-type specific mechanisms of transcriptional regulation by BET bromodomains and
develop novel therapeutics to selectively inhibit the activity of individual BET proteins as an initial step in the
design of strategies to halt the development and progression of autoimmune diabetes.
项目概要
自身免疫性糖尿病的特征是胰岛内及其周围发生炎症反应,然后
选择性破坏产生胰岛素的 β 细胞,自身免疫性糖尿病的一致性率较低。
同卵双胞胎表明表观遗传因素在糖尿病发生中发挥着重要但人们知之甚少的作用
溴结构域是组蛋白赖氨酸乙酰化和转录的表观遗传“读者”。
因子;溴结构域与乙酰化组蛋白/蛋白质的结合调节细胞类型依赖性转录
用布罗莫结构域抑制剂对非肥胖糖尿病(NOD)小鼠进行早期治疗。
末端外 (BET) 家族 (Brd2-4) 最近被证明可以抑制自身免疫性糖尿病的发展。
BET 抑制的保护作用与抗炎和促增殖表型相关
分别是巨噬细胞和β细胞;然而,人们对其机制知之甚少。
Brd4 调节胰岛中的 β 细胞增殖和巨噬细胞炎症,并抑制 Brd2 和 Brd3
是泛BET抑制剂在自身免疫性疾病中的作用,与这一假设一致,泛BET。
抑制与学习和记忆受损以及免疫系统功能降低有关。
自身免疫性糖尿病的表观遗传干预代表了主要儿科疾病的新治疗靶点
作为自身免疫治疗策略,必须尽量减少 Brd4 抑制的脱靶效应。
糖尿病将通过三个具体目标进行检查: 目标 1) 检验 Brd4 抑制可预防糖尿病的假设
巨噬细胞的激活和炎症介质的产生会损害 β 细胞。
我们的初步数据显示泛 BET 抑制剂可减弱巨噬细胞产生炎症
目标 2) 检验 Brd4 抑制可保护 β 细胞免受影响的假设。
通过刺激 DNA 损伤修复途径并保护线粒体免受细胞因子介导的损伤
研究将使用缺乏 Brd2、Brd3 和 Brd4 的胰岛素瘤细胞以及化学抑制剂来探索
BET 蛋白在调节 β 细胞对炎症介质的反应和激活
促进 β 细胞从氧化应激中恢复的防御途径 目标 3) 开发选择性 Brd4 抑制剂。
我们提供证据来支持我们的创新方法。
使用 Brd4 特有的特定氨基酸残基的共价靶向来选择性抑制 Brd4,
将使用分子、免疫学、细胞生物学、遗传和化学生物学方法
研究 BET 抑制保护 β 细胞的分子和细胞途径,并开发
选择性靶向 BET 转录调控因子家族的新工具和试剂 我们的长期目标。
旨在阐明 BET 溴结构域转录调节的细胞类型特异性机制和
开发新的疗法来选择性抑制单个 BET 蛋白的活性,作为该研究的第一步
设计阻止自身免疫性糖尿病发生和进展的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Christopher Smith其他文献
Brian Christopher Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Christopher Smith', 18)}}的其他基金
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
10469470 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
10580893 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
9769079 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Biochemical mechanisms of beta cell protection through bromodomain inhibition
通过溴结构域抑制保护 β 细胞的生化机制
- 批准号:
10216248 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
10241303 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
8128518 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
8410605 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
8308585 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
7999307 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
中性氨基酸转运体SNAT2在血管稳态和重构中的作用及机制
- 批准号:82370423
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
BRD9通过表观重塑促进支链氨基酸代谢介导TP53突变型胰腺癌化疗耐药的机制研究
- 批准号:82360519
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
氨基酸转运体SLC7A5诱导食管癌免疫治疗获得性耐药的机制研究
- 批准号:82373410
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
(光)电催化硝酸根和有机酸C-N偶联合成氨基酸
- 批准号:22372162
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Biochemical mechanisms of beta cell protection through bromodomain inhibition
通过溴结构域抑制保护 β 细胞的生化机制
- 批准号:
10216248 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别: