Biochemical mechanisms of beta cell protection through bromodomain inhibition
通过溴结构域抑制保护 β 细胞的生化机制
基本信息
- 批准号:10216248
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-20 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAmino AcidsAnti-Inflammatory AgentsAttenuatedAutoimmune DiabetesAutoimmune DiseasesB Cell ProliferationBeta CellBindingBiochemicalBiologicalBlood GlucoseBromodomainCRISPR/Cas technologyCell DeathCellsChemicalsChildhoodCytoprotectionDNA RepairDataDevelopmentDiabetes MellitusEarly treatmentEpigenetic ProcessFamilyFamily memberGene ExpressionGeneticGenetic TranscriptionGoalsHistonesImmuneImmune systemImmunologicsImpairmentInbred NOD MiceIndividualInflammationInflammation MediatorsInflammatoryInsulinInterleukin-1 betaInterventionIslets of LangerhansLeadLearningLysineMacrophage ActivationMediatingMediator of activation proteinMemoryMitochondriaMolecularMonozygotic twinsNitric OxideOxidative StressPancreasPathway interactionsPatientsPhenotypePopulationProductionProteinsReactionReaderReagentRecoveryRegulationRoleTestingTherapeuticTranscriptional Regulationcell typecytokinedesigneffective therapyimmune system functioninhibitor/antagonistinnovationinsulinomaisletmacrophagemouse modelnew therapeutic targetnovelnovel therapeuticspatient populationpediatric patientspreventprotective effectresponsetooltranscription factor
项目摘要
PROJECT SUMMARY
Autoimmune diabetes is characterized by an inflammatory reaction in and around pancreatic islets followed by
selective destruction of insulin producing β-cells. Low concordance rates of autoimmune diabetes in
monozygotic twins indicate an important but poorly understood role for epigenetic factors in diabetes initiation
and progression. Bromodomains are epigenetic “readers” of lysine acetylation on histones and transcription
factors; bromodomain binding to acetylated histones/proteins regulates transcription in a cell-type dependent
manner. Early treatment of non-obese diabetic (NOD) mice with an inhibitor of the bromodomain and
extraterminal (BET) family (Brd2-4) was recently shown to suppress development of autoimmune diabetes.
The protective effects of BET inhibition correlated with anti-inflammatory and pro-proliferative phenotypes in
macrophages and β-cells, respectively; however, the mechanisms are poorly understood. We hypothesize that
Brd4 regulates β-cell proliferation and macrophage inflammation in islets, and that inhibition of Brd2 and Brd3
are liabilities of pan-BET inhibitors in autoimmune diseases. Consistent with this hypothesis, pan-BET
inhibition is associated with impaired learning and memory as well as reduced immune system function. As
epigenetic intervention in autoimmune diabetes represents a novel therapeutic target in a primarily pediatric
population, off-target effects must be minimized. Brd4 inhibition as a therapeutic strategy in autoimmune
diabetes will be examined in three specific aims: Aim 1) Test the hypothesis that Brd4 inhibition prevents
macrophage activation and production of inflammatory mediators known to damage β-cells. Studies will build
on our preliminary data showing that pan-BET inhibitors attenuate macrophage production of inflammatory
mediators such as IL-1β and nitric oxide. Aim 2) Test the hypothesis that Brd4 inhibition protects β-cells from
cytokine-mediated damage by stimulating DNA damage repair pathways and protecting mitochondria from
damage. Studies will use insulinoma cells deficient in Brd2, Brd3, and Brd4 and chemical inhibitors to explore
the role of BET proteins in the regulation of β-cell responses to inflammatory mediators and the activation of
defense pathways that facilitate β-cell recovery from oxidative stress. Aim 3) Develop selective Brd4 inhibitors
for effective treatment of autoimmune diabetes. We provide evidence to support our innovative approach to
selectively inhibit Brd4 using covalent targeting of a specific amino acid residue unique to Brd4. Biochemical,
molecular, immunological, cell biological, genetic, and chemical biological approaches will be used to
investigate the molecular and cellular pathways through which BET inhibition protects β-cells and to develop
novel tools and reagents to selectively target the BET family of transcriptional regulators. Our long-term goals
are to elucidate the cell-type specific mechanisms of transcriptional regulation by BET bromodomains and
develop novel therapeutics to selectively inhibit the activity of individual BET proteins as an initial step in the
design of strategies to halt the development and progression of autoimmune diabetes.
项目摘要
自身免疫性糖尿病的特征是胰岛和周围的炎症反应。
胰岛素产生β细胞的选择性破坏。自身免疫性糖尿病的一致性低
单卵双胞胎表明表观遗传因素在糖尿病开始
和进展。溴化局是组蛋白和转录上赖氨酸乙酰化的表观遗传“读者”
因素;与乙酰化的神经蛋白/蛋白质结合溴d域,调节依赖性细胞类型的转录
方式。早期治疗非肥胖糖尿病(NOD)小鼠的抑制剂和
最近证明,外部周期(BET)家族(BRD2-4)抑制自身免疫性糖尿病的发展。
BET抑制作用的受保护作用与抗炎和促销表型有关
巨噬细胞和β细胞分别;但是,这些机制知之甚少。我们假设这一点
BRD4调节胰岛中的β细胞增殖和巨噬细胞注射,并抑制BRD2和BRD3
是自身免疫性疾病中泛抑制剂的负债。与这个假设一致
抑制与学习和记忆力受损以及免疫系统功能降低有关。作为
自身免疫性糖尿病的表观遗传干预代表原发性小儿的新型热靶标
人口,脱靶效应必须最小化。 BRD4抑制作自身免疫性的治疗策略
糖尿病将以三个特定目的进行检查:目标1)测试BRD4抑制作用的假设
巨噬细胞的激活和炎症介质的生产已知损坏β细胞。研究将建立
关于我们的初步数据,表明泛膏抑制剂减弱了炎症的巨噬细胞的产生
IL-1β和一氧化氮等介体。目标2)检验BRD4抑制保护β细胞免受的假设
细胞因子介导的损伤,通过刺激DNA损伤修复途径并保护线粒体免受
损害。研究将使用缺乏BRD2,BRD3和BRD4和化学抑制剂的胰岛素瘤细胞来探索
BET蛋白在调节β细胞对炎症介质的反应中的作用以及激活
促进β细胞从氧化应激中恢复的防御途径。目标3)开发选择性BRD4抑制剂
有效治疗自身免疫性糖尿病。我们提供证据以支持我们的创新方法
使用特定的氨基酸保留率的共价靶向BRD4独有的靶向有选择地抑制BRD4。生化,
分子,免疫学,细胞生物学,遗传和化学生物学方法将用于
研究分子和细胞途径,通过这些途径抑制可以保护β细胞并发展
新颖的工具和试剂,以选择性地针对转录调节器的BET家族。我们的长期目标
阐明通过BET溴结构域和
开发新的疗法以选择性地抑制单个BET蛋白的活性,这是
制定停止自身免疫性糖尿病的发展和发展的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Christopher Smith其他文献
Brian Christopher Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Christopher Smith', 18)}}的其他基金
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
10469470 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
10580893 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Biochemical mechanisms of beta cell protection through bromodomain inhibition
通过溴结构域抑制保护 β 细胞的生化机制
- 批准号:
10427263 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
9769079 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Discovering and Exploiting Selectivity within Tandem Bromodomains
发现和利用串联布罗莫结构域内的选择性
- 批准号:
10241303 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
8128518 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
8410605 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
8308585 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
Shining Light on the Mechanism and Regulation of Nitric Oxide Synthases
揭示一氧化氮合成酶的机制和调节
- 批准号:
7999307 - 财政年份:2010
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
氨基酸转运体调控非酒精性脂肪肝的模型建立及机制研究
- 批准号:32371222
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
催化不对称自由基反应合成手性α-氨基酸衍生物
- 批准号:22371216
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
特定肠道菌种在氨基酸调控脂质代谢中的作用与机制研究
- 批准号:82300940
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道菌群紊乱导致支链氨基酸减少调控Th17/Treg平衡相关的肠道免疫炎症在帕金森病中的作用和机制研究
- 批准号:82301621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氨基酸调控KDM4A蛋白N-末端乙酰化修饰机制在胃癌化疗敏感性中的作用研究
- 批准号:82373354
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Biochemical mechanisms of beta cell protection through bromodomain inhibition
通过溴结构域抑制保护 β 细胞的生化机制
- 批准号:
10427263 - 财政年份:2018
- 资助金额:
$ 38.5万 - 项目类别: