Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
基本信息
- 批准号:10413230
- 负责人:
- 金额:$ 8.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimalsAreaBiologicalBiological ModelsBlood CirculationBrainCRISPR/Cas technologyCardiacCardiovascular systemCessation of lifeCognitionConsumptionDataDevelopmentDiseaseEndocrineExerciseExperimental DesignsExperimental ModelsFatty acid glycerol estersFibrinogenFoundationsFundingFutureGene Transfer TechniquesGenerationsGenesHealthHealth BenefitHealth PromotionHealth protectionHeartHippocampus (Brain)HumanHypothalamic structureKnock-inKnock-in MouseLigandsLiverLiver CirculationLongitudinal StudiesMachine LearningMediatingMetabolicMetabolismMetalsMiningModelingMolecularMultiomic DataMusMuscleMutationNeurodegenerative DisordersOrganPhenotypePhysical activityPreventionProteinsProteomicsPsyche structureRattusRegulationResearch DesignRoleSiteSkeletal MuscleSolidSuperoxide DismutaseTechniquesTetanus Helper PeptideTimeTissuesTransducersTransgenesTransgenic MiceUnited States National Institutes of Healthautocrinebasebisulfite sequencingcognitive functiondesigneffective interventionendurance exerciseexercise capacityexercise trainingexperienceextracellulargain of functiongene regulatory networkimprovedinnovationloss of functionmental functionmetabolomicsmultidisciplinarymultiple omicsparacrinephenotypic dataphosphoproteomicspre-clinicalpreventprogramsreceptorresponseskeletaltherapeutic developmenttherapeutically effectivetranscriptome sequencingtranscriptomics
项目摘要
ABSTRACT
Regular exercise (physical activity) is the most effective intervention that promotes health and combats non-
communicable disease (NCD). However, our understanding of the molecule(s) responsible for the superb
benefits of exercise is obscure. The NIH Common Fund project “Molecular Transducers of Physical Activity
Consortium (MoTrPAC)” is a large-scale discovery study designed to understand the molecular responses to
exercise training, which has released the first batch of multi-omics data, including RNA-seq, Reduced
Representation Bisulfite Sequencing, proteomics, phosphoproteomics, acetylproteomics, and targeted and
untargeted metabolomics, from 5 tissues collected at different time points in rats following an acute bout of
endurance exercise. These endeavors have laid a solid foundation for elucidation of the molecular transducer of
physical activity. We have recently made significant progress in four areas, which poised us to explore these
data and elucidate the mechanism(s) in an unprecedented manner. Specifically, 1) We have obtained similar
time-course, transcriptomics data in 4 tissues in mice following acute and long-term endurance exercise and
developed machine learning capability for mining the multi-omics data for identification of regulatory factors that
mediate the exercise benefits; 2) We have perfected CRISPR/Cas9-mediated gene editing for generation of loss-
of-function knock-in mice as well as techniques to generate tissue-specific, inducible gain-of-function transgenic
mice; 3) We have established comprehensive phenotypic analysis in mice; and 4) We have had a successful
experience in elucidating the regulation and function of extracellular superoxide dismutase (EcSOD), a humoral
factor expressed in skeletal muscle and promoted by endurance exercise, in mediating the health benefits and
protection against diseases. We hypothesize that endurance exercise promotes expression and release of one
or more humoral factors from one or multiple tissues/organs, which is sufficient and necessary mediating the
health benefits of exercise. To this end, we propose
1) Identify candidate molecular transducers of physical activity by machine learning-based multi-omics modeling.
2) Generate loss-of-function knock-in and tissue-specific, gain-of-function transgenic mice using CRISPR/Cas9-
mediated gene editing and transgenesis.
3) Elucidate the role of the candidate molecular transducers of physical activity in health benefits of exercise.
The experimental design and model systems are both conceptually and technically innovative. The findings will
significantly improve the mechanistic understanding of exercise-induced adaptations with great potential impact
on the future development of therapeutics for NCD.
抽象的
定期运动(体育锻炼)是促进健康的最有效干预措施,并与非 -
传染病(NCD)。但是,我们对负责精湛的分子的理解
运动的好处是晦涩的。 NIH共同基金项目“体育锻炼的分子传感器
财团(MOTRPAC)”是一项大规模发现研究,旨在了解分子反应
锻炼训练已发布了包括RNA-seq在内的第一批多摩斯数据,减少了
代表硫酸盐测序,蛋白质组学,磷酸蛋白质组学,乙酰蛋白质组学和靶向和靶向
未靶向的代谢组学,来自在急性回合后在大鼠不同时间点收集的5个组织
耐力运动。这些努力为阐明分子传感器的稳固基础
体育锻炼。我们最近在四个领域取得了重大进展,这使我们毒化了这些
数据并以前所未有的方式阐明机制。具体来说,1)我们获得了相似的
急性和长期耐力运动和长期耐力运动后,小鼠4组织中的转录组学数据以及
开发的机器学习能力用于挖掘多摩斯数据,以识别监管因素
调解运动益处; 2)我们已经完善了CRISPR/CAS9介导的基因编辑,以产生损失 -
功能敲击小鼠以及产生组织特异性,功能障碍的转基因的技术
小鼠; 3)我们已经在小鼠中建立了全面的表型分析; 4)我们取得了成功
阐明细胞外超氧化物歧化酶(ECSOD)的调节和功能的经验,一种
在骨骼肌中表达的因素,并通过耐力运动促进,调解健康益处和
防止疾病。我们假设耐力运动促进了一个
或来自一个或多次/器官的更多体液因素,这足以介导
运动的健康益处。为此,我们提出了
1)通过基于机器学习的多词建模来确定候选体育活动的分子传感器。
2)使用CRISPR/CAS9-产生功能损失的敲入和组织特异性的转基因小鼠。
介导的基因编辑和转基因。
3)阐明了候选人体育活动中候选分子传感器在运动中的健康益处中的作用。
实验设计和模型系统在概念和技术上都是创新的。调查结果会
显着提高对运动引起的适应的机械理解,并具有很大的潜在影响
关于NCD理论的未来发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhen Yan其他文献
Zhen Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhen Yan', 18)}}的其他基金
Exercise-Induced Mitophagy In Hippocampal Neurons Against AD
运动诱导的海马神经元线粒体自噬对抗 AD
- 批准号:
10765466 - 财政年份:2022
- 资助金额:
$ 8.46万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10380087 - 财政年份:2021
- 资助金额:
$ 8.46万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10551274 - 财政年份:2021
- 资助金额:
$ 8.46万 - 项目类别:
Synaptic and Genetic Mechanisms of Sex-Specific Effects of Stress
压力的性别特异性影响的突触和遗传机制
- 批准号:
10225076 - 财政年份:2021
- 资助金额:
$ 8.46万 - 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10771467 - 财政年份:2020
- 资助金额:
$ 8.46万 - 项目类别:
Machine learning-based multi-omics modeling and CRISPR/Cas9-mediated gene editing in elucidating molecular transducer of physical activity
基于机器学习的多组学建模和 CRISPR/Cas9 介导的基因编辑阐明身体活动的分子转导器
- 批准号:
10264175 - 财政年份:2020
- 资助金额:
$ 8.46万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Function interactions between mitogen-activated protein kinases (MAPKs) and SARS-CoV-2
丝裂原激活蛋白激酶 (MAPK) 与 SARS-CoV-2 之间的功能相互作用
- 批准号:
10659904 - 财政年份:2023
- 资助金额:
$ 8.46万 - 项目类别:
Glomerular and Tubular Function in the Recovering Kidney
肾脏恢复中的肾小球和肾小管功能
- 批准号:
10587898 - 财政年份:2023
- 资助金额:
$ 8.46万 - 项目类别:
Changes in the Ionic Basis of GABAergic Inhibition that Contribute to Post-traumatic Epilepsy
导致创伤后癫痫的 GABA 能抑制离子基础的变化
- 批准号:
10713240 - 财政年份:2023
- 资助金额:
$ 8.46万 - 项目类别:
High density chronic optogenetic interface for primate brains
灵长类大脑的高密度慢性光遗传学接口
- 批准号:
10706899 - 财政年份:2023
- 资助金额:
$ 8.46万 - 项目类别:
Neuroprotection of Remotely Administered Hypothermia on Spleen in Ischemic Stroke
远程低温对缺血性中风脾脏的神经保护作用
- 批准号:
10809221 - 财政年份:2023
- 资助金额:
$ 8.46万 - 项目类别: