Gradient biomaterials to investigate niche regulation of hematopoiesis
梯度生物材料研究造血的生态位调节
基本信息
- 批准号:10413538
- 负责人:
- 金额:$ 9.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-07-14
- 项目状态:已结题
- 来源:
- 关键词:AddressAutomobile DrivingBenchmarkingBiocompatible MaterialsBiological AssayBiologyBiomimeticsBiophysicsBloodBlood VesselsBone MarrowBone Marrow TransplantationCellsCommunitiesComplementEcosystemEncapsulatedEngineeringExtracellular MatrixFundingFutureGoalsGoldHematologyHematopoiesisHematopoietic Stem Cell TransplantationHematopoietic SystemHematopoietic stem cellsHydrogelsHypoxiaImmuneIn VitroInfrastructureInvestigationKineticsLifeMachine LearningMarrowMediatingMedicineMetabolicModelingMusPatternPericytesPhysiologicalProcessRegulationResearchSignal TransductionStressStructureTechnologyTherapeuticTissue Engineeringarteriolebasecell behaviordesignexhaustionextracellularhematopoietic stem cell expansionhematopoietic stem cell fatehematopoietic stem cell nichehematopoietic stem cell quiescencein vivoinnovationintercellular communicationnanolitrepressureprogramsresponseself-renewalstem cellsstemnesstool
项目摘要
ABSTRACT
Replicating the cascade of signals responsible for controlling stem cell behavior remains a critical challenge for biology and medicine. Hematopoiesis is the process where the body’s blood and immune cells are generated from a small number of hematopoietic stem cells (HSCs). HSC quiescence, self-renewal, and differentiation take place in, and are regulated by, unique regions of the bone marrow termed niches. HSCs are also the functional unit of therapeutic bone marrow transplants following myeloablative therapies. A major goal of the hematology community is to selectively expand HSCs without sacrificing a subpopulation of quiescent, long-term repopulating HSCs required for life-long hematopoiesis. Perivascular niches (PVNs) within the bone marrow are increasingly believed to present a constellation of matrix, biomolecular, and metabolic signals to support HSC expansion and quiescence, however their rarity and complexity can complicate direct in vivo examination. The long-term goal of this Stimulating Hematology Investigation – New Endeavors (SHINE) project is to advance a tissue engineering platform to achieve HSC expansion without exhaustion. In the previous funding period (R01DK099528), we established a tissue engineering ecosystem to examine the coordinated impact of niche- inspired biophysical signals and marrow-derived niche cells on HSC fate. We showed the kinetics of HSC-niche cell crosstalk can be manipulated via biomaterial design to dramatically alter HSC fate decisions. And we developed machine learning tools to identify secretome signals generated by niche-associated MSCs that enhance retention of quiescent HSCs. We build on these findings to investigate the coordinated effect of multicellular crosstalk, cell-mediated extracellular matrix remodeling, and hypoxic stress within the perivascular niche using biomimetic models of marrow sinusoidal vs. arteriolar vascular niches. The overall objective of this project is to define patterns of multicellular signaling and remodeling within an engineered PVN biomaterial in order to identify synthetic niches that promote HSC expansion without exhaustion. To address this goal we will first construct and thoroughly characterize an engineered perivascular niche (Aim 1). We will subsequently resolve patterns of niche remodeling and HSC-PVN crosstalk in response to hypoxia (Aim 2). And we will establish a microdroplet-based artificial marrow niche to encapsulate single murine HSCs in nanoliter-volume hydrogel droplets (Aim 3). Throughout, we will benchmark patterns of in vitro HSC expansion via the gold standard in vivo competitive repopulation assay. This proposed research is unified in our focus to use the well- characterized murine hematopoietic system to develop engineered niche technologies for HSC expansion. Consistent with score-driving criteria of the SHINE program, we will generate innovative tissue engineering infrastructure to define dynamic processes of remodeling and intercellular HSC-niche crosstalk necessary to achieve durable HSC expansion without exhaustion.
抽象的
复制负责控制干细胞行为的信号级联仍然是生物学和医学的一个关键挑战。造血是由少量静止、自我生成的造血干细胞 (HSC) 生成人体的血液和免疫细胞的过程。更新和分化发生在称为“微生境”的骨髓独特区域中,并受其调节,也是清髓性骨髓移植后治疗性骨髓移植的功能单位。血液学界的一个主要目标是选择性地扩增造血干细胞,而不牺牲终生造血所需的静态、长期重新增殖的造血干细胞亚群,人们越来越相信骨髓内的血管周围微环境(PVN)具有一系列的功能。基质、生物分子和代谢信号来支持 HSC 扩增和静止,但它们的稀有性和复杂性可能使直接体内检查变得复杂。该刺激血液学研究 - 新努力 (SHINE) 项目的目标是推进组织工程平台,以实现 HSC 扩展而不会耗尽。 在之前的资助期间 (R01DK099528),我们建立了一个组织工程生态系统来检查利基-我们发现,可以通过生物材料设计来控制 HSC 细胞串扰的动力学,从而显着改变 HSC 的命运决定。我们开发了机器学习工具来识别微环境相关 MSC 产生的分泌蛋白组信号,这些信号可增强静态 HSC 的保留。我们以这些发现为基础,研究多细胞串扰、细胞介导的细胞外基质重塑和血管周围微环境中缺氧应激的协调作用。使用骨髓窦与小动脉血管壁龛的仿生模型该项目的总体目标是定义工程 PVN 生物材料内的多细胞信号传导和重塑模式,以便识别。为了实现这一目标,我们将首先构建并彻底表征工程化的血管周围生态位(目标 1),然后我们将解决响应缺氧的生态位重塑和 HSC-PVN 串扰的模式(目标 2)。我们将建立一个基于微滴的人工骨髓生态位,将单个小鼠 HSC 封装在纳升体积的水凝胶液滴中(目标 3),我们将在整个过程中对体外模式进行基准测试。通过金标准体内竞争性再增殖测定进行 HSC 扩增 我们提出的研究重点是使用特征明确的小鼠造血系统来开发 HSC 扩增的工程利基技术,这与 SHINE 计划的评分驱动标准一致。将产生创新的组织工程基础设施,以定义重塑和细胞间 HSC 生态位串扰的动态过程,以实现持久的 HSC 扩张而不会耗尽。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan A. Harley其他文献
Brendan A. Harley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan A. Harley', 18)}}的其他基金
Synthetic manipulation of engineered perivascular niches
工程化血管周围生态位的综合操纵
- 批准号:
10831221 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818769 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Perivascular tissue models to overcome MGMT-mediated temozolomide resistance in glioblastoma
克服胶质母细胞瘤中 MGMT 介导的替莫唑胺耐药性的血管周围组织模型
- 批准号:
10818804 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10390730 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Assembling granular stem cell niches using microdroplet hydrogels
使用微滴水凝胶组装颗粒干细胞生态位
- 批准号:
10493341 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10666626 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10400873 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10606592 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Stratified and mechanically-tough biomaterial implant to improve tendon-to-bone enthesis regeneration
分层且机械坚固的生物材料植入物可改善肌腱到骨附着点的再生
- 批准号:
10495364 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
Mineralized collagen composite to accelerate craniofacial bone regeneration
矿化胶原复合物加速颅面骨再生
- 批准号:
10185367 - 财政年份:2021
- 资助金额:
$ 9.98万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Mindfulness and Behavior Change to Reduce Cardiovascular Disease Risk in Older People with HIV
正念和行为改变可降低老年艾滋病毒感染者的心血管疾病风险
- 批准号:
10762220 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
- 批准号:
10905154 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Vital capacity & airflow measurement for voice evaluation: A vortex whistle system
肺活量
- 批准号:
10737248 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Predicting Clinical Phenotypes in Crohn's Disease Using Machine Learning and Single-Cell 'omics
使用机器学习和单细胞组学预测克罗恩病的临床表型
- 批准号:
10586795 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别:
Rapid Response Monitoring with Circulating Tumor DNA in Metastatic Breast Cancer
转移性乳腺癌中循环肿瘤 DNA 的快速反应监测
- 批准号:
10650926 - 财政年份:2023
- 资助金额:
$ 9.98万 - 项目类别: