IDENTIFYING ROADBLOCKS TO LIMB REGENERATION
识别肢体再生的障碍
基本信息
- 批准号:10401572
- 负责人:
- 金额:$ 3.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdultAffectAmbystomaAmericanAmphiregulinAmputationAnatomyAnimal ModelAnimalsAttenuatedBar CodesBindingCell CycleCell ProliferationCellsChemicalsComplementComplexCuesDataDefectDevelopmentDiabetes MellitusDigit structureDiseaseEpidermal Growth Factor ReceptorEssential GenesEventEyeFRAP1 geneFailureFutureGenesGeneticGoalsHealthHumanImmuneInjuryLifeLigandsLimb structureMammalsMediatingModelingMolecularMuscle satellite cellMyofibroblastNatural regenerationOrganismPatientsPhosphoric Monoester HydrolasesPlayPrevalenceProcessProsthesisRegenerative MedicineResearchRisk FactorsRoleSalamanderSiteSourceStructureSystemTestingTherapeuticTimeTissuesTranscription CoactivatorTranslatingWorkblastemacell motilityexhaustexhaustionexperimental studygain of functiongenetic analysisgenetic approachin vivoinhibitor/antagonistinsightlimb amputationlimb losslimb regenerationloss of functionmacrophagemigrationnovelprematurepreventprogenitorrecruitregeneration modelregenerativeresponsesingle-cell RNA sequencingstem cellstissue regenerationtranscriptome sequencingwound epidermiswound healingwound response
项目摘要
PROJECT SUMMARY (ABSTRACT)
Humans have exceedingly limited natural limb regenerative abilities. Limb loss due to injury or disease
is a major health problem. About two million Americans currently live with the consequences of limb loss, and
this number is expected to rise because of increased prevalence of key risk factors such as diabetes and other
diseases that affect vasculature. The consequences of amputation are profound for patients and most must
rely on prosthetics, which are not perfect. A regenerative medicine approach may one day be feasible if it were
understood how total limb replacement can be naturally achieved. To gain this understanding, we are
employing an animal model, the axolotl salamander, which can completely regenerate limbs following
amputation, even as adults. Axolotl limbs are anatomically similar to human limbs, and their initial development
is similar as well. Thus, they offer a blueprint for how a complex, three-dimensional limb can be regrown and
functionally integrated into the existing stump following amputation. Key issues that must be resolved if this
paradigm is to be translated into the human forum are how axolotls activate and cultivate the progenitors for
the new limb. Additionally, the cellular and molecular forces that might antagonize successful regeneration
must also be understood as these might normally exist in human patients and thereby prevent regeneration.
Future research could elucidate whether the molecular and cellular forces guiding these events are not
activated in mammals, or whether they terminate prematurely, or whether they are overtly blocked by other
factors. The approach is to first thoroughly understand how limbs do regenerate, and then later use this
information to develop hypotheses for future possible therapies.
In this proposal, we leverage our recent finding that axolotls can be compromised in their ability to
regenerate limbs following repeated amputation. This finding presents a unique opportunity to identify factors
that may be limiting in regeneration or may antagonize it. We will examine activation of progenitor cells
following successive amputations to determine if these cells are exhausted in regenerative failure. We will also
consider the role of macrophages and myofibroblasts in regenerative failure following repeated amputation. We
will test if the regenerative limitations we uncovered operate at a local level, within the limb itself and close to
the site of amputation, or if they act more systemically, elsewhere in the body. Finally, we will investigate the
activities of two genes whose expression becomes dysregulated following repeated amputation, amphiregulin
and eyes absent 2, both of which have human correlates. This research will capitalize on the opportunities
presented by our new model with the hope that increased understanding of regenerative limitations will be
essential for future regenerative medicine approaches in patients.
项目概要(摘要)
人类的肢体自然再生能力极其有限。因受伤或疾病而丧失肢体
是一个主要的健康问题。目前约有 200 万美国人承受着肢体丧失的后果,
由于糖尿病和其他主要危险因素的患病率增加,预计这一数字还会上升。
影响脉管系统的疾病。截肢的后果对患者来说是深远的,大多数人必须
依靠假肢,但假肢并不完美。如果再生医学方法有一天可能是可行的
了解如何自然地实现全肢置换。为了获得这种理解,我们
采用动物模型蝾螈,它可以在以下情况下完全再生四肢
截肢,即使是成年人。蝾螈的四肢在解剖学上与人类四肢相似,并且它们的最初发育
也类似。因此,它们为复杂的三维肢体如何再生和再生提供了蓝图。
截肢后功能性地融入现有残肢。如果出现这种情况,必须解决的关键问题
范式将被转化为人类论坛,即蝾螈如何激活和培育祖先
新肢体。此外,可能会对抗成功再生的细胞和分子力
还必须理解,因为这些通常可能存在于人类患者中,从而阻碍再生。
未来的研究可以阐明指导这些事件的分子和细胞力是否不存在。
在哺乳动物中被激活,或者它们是否过早终止,或者它们是否被其他物质明显阻断
因素。方法是先彻底了解肢体如何再生,然后再使用它
为未来可能的疗法提出假设的信息。
在这项提案中,我们利用了我们最近的发现,即蝾螈的能力可能会受到损害
反复截肢后肢体再生。这一发现为识别因素提供了独特的机会
这可能会限制再生或可能拮抗再生。我们将检查祖细胞的激活
连续截肢后确定这些细胞是否因再生失败而耗尽。我们也会
考虑巨噬细胞和肌成纤维细胞在反复截肢后再生失败中的作用。我们
将测试我们发现的再生限制是否在局部水平上起作用,在肢体本身内并接近
截肢部位,或者如果它们作用更系统,则在身体其他部位。最后,我们将调查
重复截肢后表达失调的两个基因的活性,双调蛋白
和眼睛缺席 2,两者都与人类相关。这项研究将利用以下机会
我们的新模型提出了希望加深对再生限制的理解
对于未来患者的再生医学方法至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA L. WHITED其他文献
JESSICA L. WHITED的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA L. WHITED', 18)}}的其他基金
Leveraging Single-Cell Analysis to Elucidate Mechanisms of Vertebrate LimbRegeneration
利用单细胞分析阐明脊椎动物肢体再生机制
- 批准号:
10204840 - 财政年份:2020
- 资助金额:
$ 3.64万 - 项目类别:
EPIDERMAL FACTORS THAT PROMOTE INTERNAL TISSUE PROGENITOR ACTIVATION FOLLOWING AMPUTATION
截肢后促进内组织祖细胞激活的表皮因素
- 批准号:
9253350 - 财政年份:2015
- 资助金额:
$ 3.64万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7157993 - 财政年份:2006
- 资助金额:
$ 3.64万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7286356 - 财政年份:2006
- 资助金额:
$ 3.64万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7489364 - 财政年份:2006
- 资助金额:
$ 3.64万 - 项目类别:
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
成人与儿童结核病发展的综合研究:细菌菌株和周围微生物组的影响
- 批准号:81961138012
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:国际(地区)合作与交流项目
统计学习影响成人汉语二语学习的认知神经机制
- 批准号:31900778
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 3.64万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别:
3D Methodology for Interpreting Disease-Associated Genomic Variation in RAG2
解释 RAG2 中疾病相关基因组变异的 3D 方法
- 批准号:
10724152 - 财政年份:2023
- 资助金额:
$ 3.64万 - 项目类别: