EPIDERMAL FACTORS THAT PROMOTE INTERNAL TISSUE PROGENITOR ACTIVATION FOLLOWING AMPUTATION
截肢后促进内组织祖细胞激活的表皮因素
基本信息
- 批准号:9253350
- 负责人:
- 金额:$ 8.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAmbystomaAmputationAnatomyAnimalsBiological Response Modifier TherapyCandidate Disease GeneCartilageCell CycleCellsData SetDevelopmentDifferentiation AntigensDissectionEpidermisEventFutureGene ExpressionGenesGrowthHealthHumanInjuryLabelLeadLimb DevelopmentLimb structureMammalsMethodologyMitoticMolecularMolecular GeneticsMuscleNatural regenerationOrganismPathway interactionsPatientsProcessRegenerative MedicineResearchResearch PersonnelResourcesRetroviridaeRisk FactorsRoleSalamanderStem cellsStructureSurgical suturesSystemTestingThickTissue SampleTissuesWound Healingbaseblastemacartilage celldesignexperimental studyin vivoinsightinterestlimb amputationlimb regenerationmolecular markernovelprogenitorprogramspublic health relevanceregenerativesatellite celltooltranscriptometranscriptome sequencingwound epidermis
项目摘要
DESCRIPTION (provided by applicant): Limb loss is a major health concern in the U.S. with nearly two million patients living with the consequences of a major limb amputation. This number is expected to rise with increases in key risk factors, and no biological therapeutics has been devised to address this problem. While humans have exceedingly limited regenerative abilities in limbs and other key structures, axolotl salamanders can regenerate entire limbs throughout their lives. Axolotl limbs are anatomically similar to human limbs, and they develop by similar mechanisms. Gaining a thorough understanding of the molecular mechanisms that enable axolotl limb regeneration stands to offer critical insights into future approaches that may be taken in regenerative medicine, which could in turn revolutionize the treatment options offered to patients facing amputation. This thorough mechanistic understanding has evaded researchers to date because of a paucity of tools available for experimentally manipulating gene expression in axolotls. However, within the last eight years, we-and others-have developed powerful molecular genetic tools that are operational in vivo in axolotls. We propose to leverage these developments to take a fresh look at the longstanding and important question of vertebrate limb regeneration. In axolotls, one of the earliest events post-amputation is the formation of a specialized wound epidermis across the stump. Beneath this wound epidermis, progenitor cell pool for internal tissues, the blastema, forms. Blastemas are critical for limb regeneration, but their creation and growth are poorly understood, and there is a strong possibility that both aspects are under the control of the wound epidermis. Precise roles for wound epidermis and its molecular factors have been elusive because of a lack of tools for studying these questions to date. Through a massive RNA-sequencing effort extended to single-cell level, we have identified candidate genes whose expression is highly enriched in the wound epidermis versus blastema cells and all other tissues sampled. Here we propose to leverage this data set as well as our recently-developed retrovirus system for infecting axolotls in vivo to
answer specific questions about the role of wound epidermis and to examine five specific genes. In Specific Aim 1, we will determine if wound epidermis is required for activation of cartilage and muscle progenitors post-amputation using a retrovirus to mark activated cells. In Specific Aim 2, we will test the sufficiency of five wound-epidermis-enriched genes to cause dedifferentiation or stem cell activation in limbs without wound epidermis. These experiments will allow us to establish a system whereby we can study critical cellular events downstream of the wound epidermis, and it test the feasibility of using this approach to identify key molecular components of wound epidermis. Performing this research enable future experiments aimed at more intensive dissection of the molecular pathways that support the wound epidermis functions, it and will lay the groundwork for considering the role of these processes in the mammalian context.
描述(由申请人提供):在美国,肢体丧失是一个主要的健康问题,有近 200 万患者面临严重截肢的后果,预计这一数字会随着关键风险因素的增加而增加,而且目前还没有生物疗法可以解决这一问题。虽然人类的四肢和其他关键结构的再生能力极其有限,但蝾螈可以在一生中再生整个四肢。蝾螈在解剖学上与人类四肢相似,并且通过相似的机制发育,对使蝾螈肢体再生的分子机制有深入的了解,可以为再生医学中可能采用的未来方法提供重要的见解,从而彻底改变治疗方案。迄今为止,由于缺乏可用于实验性操纵蝾螈基因表达的工具,这种彻底的机制理解一直未能得到研究人员的重视。其他人已经开发出可在蝾螈体内发挥作用的强大分子遗传工具,我们建议利用这些进展重新审视脊椎动物肢体再生的长期重要问题,截肢后最早的事件之一是。跨残肢的特殊伤口表皮的形成,在该伤口表皮下方,形成内部组织的祖细胞库,即芽基,这对于肢体再生至关重要,但它们的产生和生长是非常重要的。人们对此知之甚少,而且很可能这两个方面都受到伤口表皮的控制。由于迄今为止缺乏通过大量 RNA 研究这些问题的工具,伤口表皮及其分子因素的精确作用一直难以捉摸。 -测序工作扩展到单细胞水平,我们已经确定了与芽基细胞和所有其他采样组织相比,其表达在伤口表皮中高度富集的候选基因。为了感染蝾螈体内
回答有关表皮伤口作用的具体问题,并检查五个特定基因,在特定目标 1 中,我们将使用逆转录病毒标记激活的细胞,确定截肢后软骨和肌肉祖细胞的激活是否需要伤口表皮。 2,我们将测试五个富含伤口表皮的基因是否足以引起没有伤口表皮的四肢去分化或干细胞激活这些实验将使我们能够建立一个系统。可以研究伤口表皮下游的关键细胞事件,并测试使用这种方法来识别伤口表皮关键分子成分的可行性,进行这项研究使得未来的实验能够更深入地剖析支持伤口表皮功能的分子途径。 ,它将为考虑这些过程在哺乳动物中的作用奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JESSICA L. WHITED其他文献
JESSICA L. WHITED的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JESSICA L. WHITED', 18)}}的其他基金
Leveraging Single-Cell Analysis to Elucidate Mechanisms of Vertebrate LimbRegeneration
利用单细胞分析阐明脊椎动物肢体再生机制
- 批准号:
10204840 - 财政年份:2020
- 资助金额:
$ 8.85万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7157993 - 财政年份:2006
- 资助金额:
$ 8.85万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7286356 - 财政年份:2006
- 资助金额:
$ 8.85万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7489364 - 财政年份:2006
- 资助金额:
$ 8.85万 - 项目类别:
相似国自然基金
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探究Pax7阳性细胞在墨西哥钝口螈尾部再生中的命运转换及机制
- 批准号:32300698
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
再生模式生物墨西哥钝口螈脊髓细胞亚群分析及其在脊髓再生中的互作研究
- 批准号:
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
利用再生模式生物蝾螈(Ambystoma mexicanum)研究启动脊髓再生的机制
- 批准号:31771611
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Ribosomes and Regeneration: Defining the Role of Protein Synthesis in Tissue Development, Homeostasis and Repair.
核糖体和再生:定义蛋白质合成在组织发育、稳态和修复中的作用。
- 批准号:
10407363 - 财政年份:2019
- 资助金额:
$ 8.85万 - 项目类别:
Ribosomes and Regeneration: Defining the Role of Protein Synthesis in Tissue Development, Homeostasis and Repair.
核糖体和再生:定义蛋白质合成在组织发育、稳态和修复中的作用。
- 批准号:
9805445 - 财政年份:2019
- 资助金额:
$ 8.85万 - 项目类别:
Using CRISPR-induced mosaicism to investigate genes required for salamander limb regeneration
利用 CRISPR 诱导的嵌合现象研究蝾螈肢体再生所需的基因
- 批准号:
9359987 - 财政年份:2016
- 资助金额:
$ 8.85万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7286356 - 财政年份:2006
- 资助金额:
$ 8.85万 - 项目类别:
Cell Lineage Analysis in Vertebrate Limb Regeneration
脊椎动物肢体再生中的细胞谱系分析
- 批准号:
7489364 - 财政年份:2006
- 资助金额:
$ 8.85万 - 项目类别: