Rare-event simulation and analysis for elucidating mechanisms of development and disease
用于阐明发育和疾病机制的罕见事件模拟和分析
基本信息
- 批准号:10396476
- 负责人:
- 金额:$ 32.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAlzheimer&aposs DiseaseAmyloid FibrilsAnteriorBindingBiologicalBiological ProcessCell ShapeComplementComputing MethodologiesCoupledCytoskeletal ModelingDefectDevelopmentDevelopmental ProcessDiabetes MellitusDiseaseDrug KineticsEngineeringEquilibriumEventFeedbackGrainHealthImmunologicsIn VitroInsulinInsulin ReceptorKnowledgeLeadLengthLifeMethodsMicroscopicMissionModelingModificationMolecularMonomeric GTP-Binding ProteinsNeurodegenerative DisordersNeuronsParkinson DiseasePatternPlayProcessPropertyRNA-Binding ProteinsReactionResearchResolutionRoleSignal TransductionSignaling MoleculeStructureTestingTherapeuticTherapeutic IndexTimeTissuesUnited States National Institutes of Healthamyloid formationanalogbasecostdesigndisabilityexperimental studyimprovedin vivoinsightpandemic diseasereceptorreceptor bindingself assemblysimulationstatisticssynaptogenesistumor growthwound healing
项目摘要
PROJECT SUMMARY. Molecular simulations complement experiments by revealing the microscopic dynamics
underlying biological mechanisms and the forces promoting those dynamics. However, most biological processes
involve time scales much longer than the time step of numerical integration. While there are many methods for
bridging this separation of time scales to obtain equilibrium averages, further advances are needed to robustly
estimate dynamical statistics. The proposed research seeks to develop general methods that can meet this need
and to apply them to elucidating self-assembly mechanisms at both molecular and cellular length scales.
Improving insulin therapies through rare-event analyses of short simulations. There is a pandemic in diabetes
mellitus, with tremendous cost worldwide. The main treatment is insulin therapy, but it has a narrow therapeutic
index, and its requirement for refrigerated transport and storage is prohibitively costly for much of the world.
Insulin analogs have been engineered to have specific pharmacokinetics based on knowledge of insulin self-
association, but an understanding of how insulin binds to the insulin receptor (IR) remains lacking. We seek to
develop computational methods that can enable simulation and analysis of coupled folding and binding reactions
and to combine these methods with recently obtained structures of IR bound to insulin and single-chain insulin
(SCI) analogs to elucidate the microscopic origins of observed therapeutic activities. The study can thus ultimately
lead to improved insulin therapies. We will also investigate the improved thermal properties of SCI analogs, in
particular, their reduced tendency to form amyloid fibrils. The study thus also promises to yield insights into
amyloid formation, with broad implications beyond insulin to neurodegenerative disorders like Parkinson's and
Alzheimer's diseases.
Modeling cytoskeletal processes leading to developmental patterning. Cytoskeletal dynamics underlie diverse
processes, including developmental patterning, neuronal synapse formation, immunological recognition, wound
healing, and tumor growth. These dynamics can be very hard to intuit because they involve balances of me-
chanical forces, mechanochemistry, network assembly and dissasembly, and feedback to and from cell signaling
molecules. Models thus play an important role in parsing contributing molecular processes and testing quanti-
tative hypotheses. We will adapt a recently parameterized cytoskeletal model that is quantitatively predictive in
vitro to elucidate mechanisms of developmental patterning in vivo. Namely, we will investigate how interactions
between the small GTPase RhoA and actin assembly/dissasembly control pulsatile contractility, a widespread
phenomenon that drives cortical flow, cell shape change, and tissue deformation. Then we will compare models
for the localization of the evolutionarily-conserved RNA-binding protein Staufen during anterior-posterior speci-
fication. In addition to aiding in understanding these key developmental processes, the simulations will yield a
model that can be used to study cytoskeletal dynamics in a broad range of contexts with minimal modification.
项目摘要。分子模拟通过揭示微观动力学来补充实验。
然而,大多数生物过程的基本生物机制和促进这些动态的力量。
涉及的时间尺度比数值积分的时间步长得多,尽管有很多方法。
桥接这种时间尺度的平衡分离以获得平均值,需要进一步的进步来稳健地
估计动态统计数据旨在开发能够满足这一需求的通用方法。
并将它们应用于阐明分子和细胞长度尺度的自组装机制。
通过短期模拟的罕见事件分析改善胰岛素治疗 糖尿病正在流行。
胰岛素治疗是一种在全球范围内花费巨大的治疗方法,但其治疗范围较窄。
指数,其对冷藏运输和储存的要求对于世界大部分地区来说成本高昂。
基于胰岛素自身的知识,胰岛素类似物被设计为具有特定的药代动力学。
关联,但我们仍然缺乏对胰岛素如何与胰岛素受体(IR)结合的了解。
开发可以模拟和分析耦合折叠和结合反应的计算方法
并将这些方法与最近获得的与胰岛素和单链胰岛素结合的IR结构相结合
(SCI)类似物可以阐明观察到的治疗活性的微观起源。
我们还将研究 SCI 类似物的热性能的改善。
特别是,它们形成淀粉样原纤维的倾向降低,因此这项研究也有望提供一些见解。
淀粉样蛋白的形成,其影响范围不仅限于胰岛素,还包括帕金森病和帕金森病等神经退行性疾病
阿尔茨海默病。
细胞骨架过程的建模导致发育模式的形成是多种细胞骨架动力学的基础。
过程,包括发育模式、神经元突触形成、免疫识别、伤口
这些动态可能很难凭直觉理解,因为它们涉及到我的平衡。
机械力、机械化学、网络组装和拆卸以及细胞信号传导的反馈
因此,模型在解析分子过程和定量测试方面发挥着重要作用。
我们将采用最近的参数化细胞骨架模型,该模型可以定量预测。
体外阐明体内发育模式的机制,即,我们将研究如何相互作用。
小 GTP 酶 RhoA 和肌动蛋白组装/分解控制脉动收缩性之间的关系,这是一种广泛存在的现象
然后我们将比较模型。
用于在前后特异性过程中进化保守的RNA结合蛋白Staufen的定位
除了帮助理解这些关键的发展过程之外,模拟还将产生一个结果。
该模型可用于在广泛的背景下研究细胞骨架动力学,只需进行最小的修改。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Dinner其他文献
Aaron Dinner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Dinner', 18)}}的其他基金
Rare-event simulation and analysis for elucidating mechanisms of development and disease
用于阐明发育和疾病机制的罕见事件模拟和分析
- 批准号:
10611995 - 财政年份:2020
- 资助金额:
$ 32.96万 - 项目类别:
Robust rare event simulation for protein folding and disease-related aggregation
蛋白质折叠和疾病相关聚集的稳健罕见事件模拟
- 批准号:
9316663 - 财政年份:2013
- 资助金额:
$ 32.96万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Molecular Tool Development to Identify, Isolate, and Interrogate the Rod Microglia Phenotype in Neurological Disease and Injury
开发分子工具来识别、分离和询问神经系统疾病和损伤中的杆状小胶质细胞表型
- 批准号:
10599762 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Determining the ultrastructural differences between dually and singly innervated dendritic spines and their changes following glutamate excitotoxicity using Cryo-Electron Tomography
使用冷冻电子断层扫描确定双重和单神经支配的树突棘之间的超微结构差异及其在谷氨酸兴奋性毒性后的变化
- 批准号:
10679214 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Eph and Lyn hyper-phosphorylation and CRMP interactions in AD"
AD中Eph和Lyn过度磷酸化与CRMP相互作用"
- 批准号:
10746170 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Dissecting the Molecular Link Between Stroke, Actin, and Alzheimer's Disease
剖析中风、肌动蛋白和阿尔茨海默病之间的分子联系
- 批准号:
10772704 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别:
Affinity purification of cross-ß fibrils using immobilized thioflavin
使用固定化硫代黄素对交叉原纤维进行亲和纯化
- 批准号:
10646061 - 财政年份:2023
- 资助金额:
$ 32.96万 - 项目类别: