Multimodal monitoring and high-dimensional data for episode prediction in bipolar disorder
用于双相情感障碍发作预测的多模态监测和高维数据
基本信息
- 批准号:10383774
- 负责人:
- 金额:$ 12.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-05 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAnxietyArrhythmiaArtificial IntelligenceAwardBehaviorBipolar DisorderBrainClassificationClinicalCollectionComplexDataDetectionDiseaseEconomic BurdenEntropyEventExploratory/Developmental GrantFirst Degree RelativeFutureGeneral PopulationGoalsHealth Care CostsHealth TechnologyHeart DiseasesIndividualInternationalLifeMachine LearningManicMathematicsMeasuresMental HealthMental disordersMetabolic DiseasesMethodsModelingMonitorMood DisordersMoodsNational Institute of Mental HealthPaperParticipantPatientsPatternPerformancePhysicsPhysiologicalPopulationPropertyRecommendationRecurrenceRelapseResearchResearch PrioritySamplingSeriesSignal TransductionSleepSocietiesSuicideSystemTechniquesTimeTime Series AnalysisVisualWorkanaloganalytical methodbasebiological systemsclinically relevantdata modelingdepressive symptomsdigitaldigital healthdisabilityefficacious treatmentheart rate variabilityhigh dimensionalityhigh riskindividual variationmHealthmood regulationmultidimensional datamultimodal datamultimodalitynew technologynovelnovel strategiesprediction algorithmpredictive modelingpredictive signaturepreventsimulationsuicidal risktelemonitoringtool
项目摘要
SUMMARY
Bipolar disorder (BD) is a mood disorder with high recurrence and disability rates, high economic burden,
and an estimated suicide risk 20 times higher than the general population. While efficacious treatment is
available, BD patients spend a large proportion of their life symptomatic. Predicting the onset of episodes
is a valuable strategy to decrease suicide and disability rates and to optimize healthcare costs.
The overall objective of this (R21) Exploratory/Developmental study is to obtain pilot data to support the
feasibility and potential value of a new approach to predict mood episodes in stable adult patients with
BD. This proposal aims to develop new data modeling and inference techniques that will enable more
tailored clinical signal detection: examining changes within each individual, over time. To do so, we
propose integrating multimodal, high-dimensional telemonitoring data, nonlinear techniques and artificial
intelligence classification systems. This approach builds on our preliminary work on: (i) nonlinear
techniques for the study of mood regulation in BD; (ii) an award-winning simulation using a machine
learning technique (Markov Brains) for episode prediction in BD.
AIMS: Aim 1 (feasibility): To obtain and integrate multimodal data to perform time-series analysis and
to calculate entropy levels in 90 euthymic BD adults. Exploratory Aim 2 (potential value): To use
machine learning techniques (Markov Brains) to distinguish participants at higher risk for a depressive or
manic relapse based on their time-series and entropy levels (from Aim 1).
HYPOTHESES: H1: We will be able to collect enough data in 80% of our participants and to integrate
multimodal data to perform time-series analysis and to calculate entropy levels. H2: Markov Brains will
identify participants at higher risk for a mood episode based on high (vs. low) auto-correlated time-series
and low (vs. high) entropy levels.
SIGNIFICANCE: This R21 application challenges more traditional prediction models by
conceptualizing inter- and intra-individual variability as a dynamic property of biological systems. By
leveraging densely-sampled objective and subjective data, autonomic, clinical and demographic data, this
proposal aims to develop inference techniques that will examine changes within each individual, over
time, in order to enhance the estimation performance. Ultimately, if we develop the capacity to predict
mood episodes, we should be able to prevent them.
概括
躁郁症(BD)是一种情绪障碍,具有高复发和残疾率,高经济负担,
估计的自杀风险是普通人群的20倍。虽然有效的治疗是
可用的BD患者在症状上花费很大一部分。预测情节的发作
是降低自杀和残疾率并优化医疗保健成本的宝贵策略。
该(R21)探索性/发展研究的总体目的是获取试点数据以支持
一种新方法的可行性和潜在价值,以预测稳定的成年患者的情绪发作
BD。该建议旨在开发新的数据建模和推理技术,以启用更多
量身定制的临床信号检测:随着时间的流逝,检查每个个体内部的变化。为此,我们
建议整合多模式,高维远程监控数据,非线性技术和人工
情报分类系统。这种方法基于我们的初步工作:(i)非线性
BD中情绪调节的研究技术; (ii)使用机器的屡获殊荣的模拟
BD中的情节预测的学习技术(Markov Brains)。
目的:目标1(可行性):获取和整合多模式数据以执行时间序列分析和
计算90个整体BD成年人的熵水平。探索目标2(潜在价值):使用
机器学习技术(Markov Brains)以区分抑郁症或较高风险的参与者
基于其时间序列和熵水平(来自AIM 1)的躁狂复发。
假设:H1:我们将能够在80%的参与者中收集足够的数据并整合
多模式数据以执行时间序列分析并计算熵水平。 H2:马尔可夫·脑子将
确定基于高(低)自动相关的时间序列的情绪发作风险较高的参与者
和低(与高)熵水平。
意义:此R21应用程序挑战了更传统的预测模型
将个体内和个体内变异性概念化为生物系统的动态特性。经过
利用密集采样的客观和主观数据,自主神经,临床和人口统计数据,
建议旨在开发推理技术,以检查每个人的变化,
时间,以增强估计性能。最终,如果我们发展了预测的能力
情绪发作,我们应该能够防止它们。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Predictors of adherence to electronic self-monitoring in patients with bipolar disorder: a contactless study using Growth Mixture Models.
- DOI:10.1186/s40345-023-00297-5
- 发表时间:2023-05-17
- 期刊:
- 影响因子:4
- 作者:
- 通讯作者:
Identifying patient-specific behaviors to understand illness trajectories and predict relapses in bipolar disorder using passive sensing and deep anomaly detection: protocol for a contactless cohort study.
- DOI:10.1186/s12888-022-03923-1
- 发表时间:2022-04-22
- 期刊:
- 影响因子:4.4
- 作者:Ortiz, Abigail;Hintze, Arend;Burnett, Rachael;Gonzalez-Torres, Christina;Unger, Samantha;Yang, Dandan;Miao, Jingshan;Alda, Martin;Mulsant, Benoit H.
- 通讯作者:Mulsant, Benoit H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abigail Ortiz其他文献
Abigail Ortiz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abigail Ortiz', 18)}}的其他基金
Multimodal monitoring and high-dimensional data for episode prediction in bipolar disorder
用于双相情感障碍发作预测的多模态监测和高维数据
- 批准号:
10217550 - 财政年份:2021
- 资助金额:
$ 12.55万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 12.55万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 12.55万 - 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 12.55万 - 项目类别:
Opioid Use and Acute Suicide Risk: The Real-Time Influence of Trauma Context"
阿片类药物的使用和急性自杀风险:创伤背景的实时影响”
- 批准号:
10674342 - 财政年份:2023
- 资助金额:
$ 12.55万 - 项目类别:
Relationships Between Pain-Related Psychological Factors, Gait Quality, and Attention in Chronic Low Back Pain
慢性腰痛中疼痛相关心理因素、步态质量和注意力之间的关系
- 批准号:
10679189 - 财政年份:2023
- 资助金额:
$ 12.55万 - 项目类别: