Next-Generation Cardiovascular MRI powered by Artificial Intelligence

由人工智能驱动的下一代心血管 MRI

基本信息

项目摘要

Project Summary/Abstract: Despite the accuracy and versatility of cardiovascular MRI, its footprint is only 1% among cardiac imaging tests (SPECT, echocardiography, CT, MRI) in the US. While there are several factors such as referral patterns favoring SPECT and echocardiography among cardiologists that account for low utilization, the two addressable obstacles that preclude widespread adoption are lengthy scan time (imaging facility operational cost) and reading (physician cost). These obstacles must be addressed for community hospitals with limited resources to adopt cardiovascular MRI into clinical routine practice. While compressed sensing (CS), since its introduction into the MRI world in 2007, has led to highly-accelerated cardiovascular MRI acquisitions, the subsequent image reconstruction remains too slow (> 5 min for 2D time series, > 1 hour for 3D time series) for clinical translation (unmet need 1). Downstream, image analysis for cardiovascular MRI is notoriously labor intensive (e.g. 30- to 60-min) and limited (“circles” at two cardiac phases for cine MRI, whereas perfusion and late gadolinium-enhanced (LGE) images are evaluated visually), for what is essentially a basic computer vision task (unmet need 2). In direct response, we will address these two unmet needs and unlock the enormous potential of CMR using deep learning (DL). DL applications have exploded since advancements in optimization and GPU hardware. While several recent studies have applied neural networks such as convolutional neural networks (CNNs), U-Nets, and Generative Adversarial Nets (GANs) for reconstruction and segmentation, no study has implemented an inline end-to-end pipeline that receives raw k-space from the MRI scanner and delivers both reconstructed images and fully processed images automatically with high speed (< 1 min). The objectives of this study are: a) developing a network for image reconstruction with maximal acceleration (aim 1), (b) developing a network for image processing tasks (aim 2), and c) developing an integrated, end-to-end network that does both (aim 3). By developing an architecture that can simultaneously learn maximal acceleration, fine tune end-to-end performance, and perform reconstruction/inference using feed-forward networks, we anticipate a disruptive technology that will lead to a paradigm shift in cardiovascular MRI and increase its footprint in community hospitals. This 2-year study is doable because of the requisite database of raw k-space (not derived from DICOM) data (N = 617) and annotated cardiac MR images (N=3,021) from over 3,000 patients existing at our institution. Success of this proposal will deliver a disruptive technology that has potential to cause a paradigm shift in cardiovascular MRI and enable widespread adoption of cardiovascular MRI into clinical routine practice.
项目摘要/摘要:尽管心血管MRI的准确性和多功能性,但其足迹只是 在美国,心脏成像测试(SPECT,超声心动图,CT,MRI)中有1%。虽然有几个 在心脏病专家中有利于SPECT和超声心动图的转介模式等因素 利用率较低,排除宽度采用的两个可寻址障碍是漫长的扫描时间 (成像设施运营成本)和阅读(医师成本)。这些障碍必须解决 资源有限的社区医院将心血管MRI采用到临床常规实践中。 自2007年引入MRI世界以来,压缩感应(CS)导致了高度加速的 心血管MRI获​​取,随后的图像重建仍然太慢(> 5分钟持续2次 系列,3D时间序列> 1小时)用于临床翻译(未满足需要1)。下游,图像分析 众所周知,心血管MRI是劳动密集型(例如30至60分钟)和有限的(两个心脏的“圆”) Cine MRI的阶段,而视觉上评估了许可和晚期增强(LGE)图像) 对于本质上是一项基本的计算机视觉任务(未满足需要2)。在直接回复中,我们将解决这些问题 两种未满足的需求,并使用深度学习(DL)解释了CMR的巨大潜力。 自优化和GPU硬件的进步以来,已经探索了DL应用程序。而最近的几个 研究应用了神经网络,例如卷积神经网络(CNN),U-NET和通用 对抗网(gan)进行重建和细分,没有任何研究实施端到端 从MRI扫描仪接收原始K空间的管道,并提供重建图像和完全 高速(<1分钟)自动处理的图像。这项研究的目标是:a)开发 具有最大加速度的图像重建网络(AIM 1),(b)为图像开发网络 处理任务(AIM 2)和c)开发一个同时完成的集成的端到端网络(AIM 3)。经过 开发一个可以轻松学习最大加速度,微调端到端的体系结构 性能,并使用馈送网络执行重建/推理,我们预计会有破坏性 将导致心血管MRI范式转移并增加社区的足迹的技术 医院。这项为期两年的研究是可行的,因为原始K空间的必要数据库 DICOM(n = 617)和注释的心脏MR图像(n = 3,021),来自我们现有的3,000多名患者 机构。该提案的成功将提供有可能引起范式的破坏性技术 心血管MRI的转移,并使心血管MRI的宽度采用到临床常规实践中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AGGELOS K KATSAGGELOS其他文献

AGGELOS K KATSAGGELOS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
  • 批准号:
    82071991
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
  • 批准号:
    81801139
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
4D PC-MRI血流动力学参数与主动脉夹层假腔血栓化的关系及模拟预测研究
  • 批准号:
    81770474
  • 批准年份:
    2017
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
基于4D血流MRI成像的左心房室流场变化介导的炎症反应在房颤心肌纤维化中的始动作用及机制研究
  • 批准号:
    81601462
  • 批准年份:
    2016
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Heart-brain MRI for the evaluation of hemodynamic coupling in aging and Alzheimer's disease
心脑 MRI 用于评估衰老和阿尔茨海默氏病的血流动力学耦合
  • 批准号:
    10571411
  • 财政年份:
    2023
  • 资助金额:
    $ 23.04万
  • 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
  • 批准号:
    10648495
  • 财政年份:
    2023
  • 资助金额:
    $ 23.04万
  • 项目类别:
Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 23.04万
  • 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
  • 批准号:
    10761709
  • 财政年份:
    2022
  • 资助金额:
    $ 23.04万
  • 项目类别:
Arrhythmia-resolved 5D Flow MRI in Atrial Fibrillation and Stroke
消除心律失常的 5D Flow MRI 在心房颤动和中风中的应用
  • 批准号:
    10538265
  • 财政年份:
    2022
  • 资助金额:
    $ 23.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了