Defining Mechanisms of Dynamic mTORC1 Regulation in the Liver with Fasting and Feeding
禁食和进食时肝脏动态 mTORC1 调节的定义机制
基本信息
- 批准号:10386461
- 负责人:
- 金额:$ 3.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAlanineAnabolismBiological AssayCell Culture TechniquesCell ProliferationCellsChronicComplexCouplingCuesDataDiseaseFRAP1 geneFastingGeneticGenetic TranscriptionGlucagonGlucagon ReceptorGoalsGrowth FactorHealthHepaticHepatocyteHormonalHormonesHumanInsulinInsulin ResistanceKnowledgeLinkLiverMeasuresMediatingMediator of activation proteinMetabolicMetabolic DiseasesMetabolic dysfunctionMetabolismMethodsModelingMolecularMusNon-Insulin-Dependent Diabetes MellitusNutrientObesityPhosphorylationPhosphorylation SitePhysiologicalProcessProtein KinasePublic Health SchoolsPublishingRegulationReportingRepressionRodentRoleSignal TransductionTSC2 geneTestingTissuesTuberous SclerosisTuberous sclerosis protein complexUp-RegulationWorkcell growthexperimental studyfatty acid oxidationfeedingflexibilityglucose metabolismhormonal signalsin vivoinnovationinsightinsulin regulationinsulin signalingketogenesislipid metabolismmouse modelmutantnovelprecision geneticsprotein complexresponse
项目摘要
PROJECT SUMMARY
Aberrant hepatic mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) activity is associated with
obesity and insulin resistance. Insights into the physiological inputs and mechanisms that regulate mTORC1
signaling in the liver are needed in order to understand how regulation of hepatic mTORC1 becomes disrupted
and how this contributes to insulin resistance and metabolic disease. mTORC1 is a central regulator of cellular
growth and proliferation that promotes anabolic processes in response to nutrients and growth factors. In the
liver, mTORC1 activity is sensitive to physiologic fluctuations during fasting and feeding, with reduced mTORC1
signaling during fasting and acute induction of mTORC1 upon feeding. This dynamic regulation of mTORC1 in
the liver is abolished in obese rodents, highlighting the importance of flexible mTORC1 signaling for systemic
metabolic health. The goal of this study is to define mechanisms of dynamic mTORC1 regulation in the liver, with
a focus on two hormonal cues. mTORC1 activity is induced by insulin, and both mTORC1 signaling and insulin
have been shown to regulate glucose and lipid metabolism in the liver. The mechanism by which insulin induces
mTORC1 activity is well-established in cell culture models. However, it is not known how insulin regulation
contributes to the induction of mTORC1 activity in the liver upon feeding. Conversely, published reports and our
preliminary data demonstrate that mTORC1 signaling is suppressed by glucagon in primary hepatocytes.
Glucagon signaling orchestrates an adaptive response to fasting in the liver, and hepatic mTORC1 activity blocks
multiple glucagon-mediated metabolic changes. However, the mechanism of mTORC1 repression by glucagon
and whether glucagon contributes to the repression of mTORC1 during fasting are unknown. I hypothesize that
the glucoregulatory hormones insulin and glucagon contribute to the dynamic regulation of mTORC1 in the liver
with feeding and fasting, respectively. I will test this hypothesis through two aims: 1) Use of a new precision
genetic mouse model to define the role of liver insulin signaling to mTORC1, in which I will generate and
characterize mice with mTORC1 signaling that is disconnected from insulin regulation specifically in the liver,
and 2) Determine the physiological significance and mechanism of glucagon-mediated mTORC1
suppression, in which I will determine if glucagon is necessary and sufficient for hepatic mTORC1 suppression
during fasting, as well as evaluate potential downstream mediators connecting glucagon and mTORC1 signaling
in primary hepatocytes. The proposed experiments have the potential to identify targetable insights into chronic
mTORC1 activation in metabolic disease. The study will be conducted in the lab of Dr. Brendan Manning at the
Harvard T.H. Chan School of Public Health. Dr. Manning is an expert in the mTORC1 field and has extensive
knowledge of insulin-PI3K-Akt signaling. Additionally, many of the proposed methods and mouse models are
already established in the lab.
项目概要
雷帕霉素 (mTOR) 复合物 1 (mTORC1) 活性异常的肝脏机制与
肥胖和胰岛素抵抗。深入了解调节 mTORC1 的生理输入和机制
为了了解肝脏 mTORC1 的调节如何被破坏,需要肝脏中的信号传导
以及这如何导致胰岛素抵抗和代谢疾病。 mTORC1 是细胞的中央调节因子
生长和增殖,促进响应营养物质和生长因子的合成代谢过程。在
肝脏中,mTORC1 活性对禁食和进食期间的生理波动敏感,mTORC1 降低
禁食期间的信号传导以及进食时 mTORC1 的急性诱导。 mTORC1 的这种动态调节
肥胖啮齿类动物的肝脏被废除,凸显了灵活的 mTORC1 信号传导对全身系统的重要性
代谢健康。本研究的目的是确定肝脏中 mTORC1 动态调节的机制,
关注两种荷尔蒙线索。 mTORC1 活性由胰岛素诱导,mTORC1 信号传导和胰岛素
已被证明可以调节肝脏中的葡萄糖和脂质代谢。胰岛素的诱导机制
mTORC1 活性在细胞培养模型中已得到证实。然而,尚不清楚胰岛素如何调节
有助于在进食时诱导肝脏中 mTORC1 活性。相反,已发表的报告和我们的
初步数据表明,原代肝细胞中的胰高血糖素可抑制 mTORC1 信号传导。
胰高血糖素信号传导协调肝脏对禁食的适应性反应,并且肝脏 mTORC1 活性阻断
多种胰高血糖素介导的代谢变化。然而,胰高血糖素抑制 mTORC1 的机制
禁食期间胰高血糖素是否有助于抑制 mTORC1 尚不清楚。我假设
葡萄糖调节激素胰岛素和胰高血糖素有助于肝脏中 mTORC1 的动态调节
分别与喂养和禁食。我将通过两个目标来检验这个假设:1)使用新的精度
遗传小鼠模型来定义肝脏胰岛素信号传导至 mTORC1 的作用,在该模型中我将生成和
表征具有 mTORC1 信号传导的小鼠,该信号传导与肝脏中的胰岛素调节无关,
2)确定胰高血糖素介导的mTORC1的生理意义和机制
抑制,其中我将确定胰高血糖素对于肝脏 mTORC1 抑制是否是必要且充分的
禁食期间,以及评估连接胰高血糖素和 mTORC1 信号传导的潜在下游介质
在原代肝细胞中。拟议的实验有可能确定对慢性病的有针对性的见解
代谢疾病中的 mTORC1 激活。该研究将在布伦丹·曼宁博士的实验室进行
哈佛大学 T.H.陈公共卫生学院。 Manning博士是mTORC1领域的专家,拥有广泛的研究成果
了解胰岛素-PI3K-Akt 信号传导。此外,许多提出的方法和小鼠模型都是
已经在实验室建立了。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krystle Kalafut其他文献
Krystle Kalafut的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krystle Kalafut', 18)}}的其他基金
Defining Mechanisms of Dynamic mTORC1 Regulation in the Liver with Fasting and Feeding
禁食和进食时肝脏动态 mTORC1 调节的定义机制
- 批准号:
10609421 - 财政年份:2022
- 资助金额:
$ 3.94万 - 项目类别:
相似国自然基金
自由短肽微阵列用于高通量筛选二苯丙氨酸基抗菌肽
- 批准号:52303206
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
γ-干扰素介导SRSF3色氨酸-苯丙氨酸替代翻译在胃癌免疫微环境中的作用和机制研究
- 批准号:82303803
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道微生态介导的苯丙氨酸代谢在三七皂苷抑制缺血性脑卒中继发性血栓形成中的作用机制研究
- 批准号:82304488
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于iPSC来源的类器官模型研究PHOX2B丙氨酸重复序列突变在肠脑神经系统中的致病效应及分子机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
基于新型聚合物点荧光探针的苯丙氨酸即时检测系统研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Defining Mechanisms of Dynamic mTORC1 Regulation in the Liver with Fasting and Feeding
禁食和进食时肝脏动态 mTORC1 调节的定义机制
- 批准号:
10609421 - 财政年份:2022
- 资助金额:
$ 3.94万 - 项目类别:
Muscle Mitochondrial Pyruvate Carrier Disruption Alters Amino Acid Metabolism to Maintain Muscle Mass During Recovery from Obesity
肌肉线粒体丙酮酸载体破坏改变氨基酸代谢,以在肥胖恢复过程中维持肌肉质量
- 批准号:
10618365 - 财政年份:2021
- 资助金额:
$ 3.94万 - 项目类别:
Muscle Mitochondrial Pyruvate Carrier Disruption Alters Amino Acid Metabolism to Maintain Muscle Mass During Recovery from Obesity
肌肉线粒体丙酮酸载体破坏改变氨基酸代谢,以在肥胖恢复过程中维持肌肉质量
- 批准号:
10314711 - 财政年份:2021
- 资助金额:
$ 3.94万 - 项目类别:
Muscle Mitochondrial Pyruvate Carrier Disruption Alters Amino Acid Metabolism to Maintain Muscle Mass During Recovery from Obesity
肌肉线粒体丙酮酸载体破坏改变氨基酸代谢,以在肥胖恢复过程中维持肌肉质量
- 批准号:
10468660 - 财政年份:2021
- 资助金额:
$ 3.94万 - 项目类别:
The roles of the Pseudomonas aeruginosa Prc/AlgO protease - Resubmission - 1
铜绿假单胞菌 Prc/AlgO 蛋白酶的作用 - 重新提交 - 1
- 批准号:
10312116 - 财政年份:2020
- 资助金额:
$ 3.94万 - 项目类别: