LifeBio-ALZ: AI driven digital biomarker engine leveraging natural conversation to widely scale accessibility for early detection and assessment of Alzheimers disease progression

LifeBio-ALZ:人工智能驱动的数字生物标记引擎,利用自然对话来广泛扩展可访问性,以早期检测和评估阿尔茨海默病的进展

基本信息

  • 批准号:
    10381308
  • 负责人:
  • 金额:
    $ 44.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Alzheimer’s Disease (AD) is one of the most common forms of dementia to occur in elderly populations, affecting over 30 million individuals worldwide. As the U.S. elderly population continues to increase, AD incidence rises as well, as there is no neuroprotective therapy or cure. Common symptoms include memory loss, cognitive impairment, disorientation, and psychiatric issues. Traditionally, diagnosis is achieved through a combination of clinical criteria such as neurological examination, mental status tests & brain imaging. However, these strategies are challenging for detection of early AD or patients with mild symptoms, specifically during the mild cognitive impairment (MCI) stage. Mental status tests & subjective journals, kept by patients or caregivers, can track AD progression, but have low sensitivity and reliability. The most strongly established biomarkers for AD, including amyloid beta, tau protein, & phosphorylated tau, are all obtained thru CSF requiring invasive lumbar puncture. The LifeBio-ALZ technology will provide a convenient and accessible, yet comprehensive digital biomarker and analytics suite to detect & assess Alzheimer’s progression. The platform will integrate a suite of assessment domains all seamlessly captured through a single, patient-centric app that engages users in natural video chat conversation via smart digital assistant. During brief, but regular sessions, an individual answers questions following a smart sequence to evaluate awareness, engagement, cognition, reaction time, speech patterns, & emotional state. The platform will record audio/video during the conversation. Type and timing of assessments, as well as specific questions will be adaptively modulated based on AD stage, personal demographics and previous analytics to minimize user burden while still providing rich data for algorithms. Quantitative features across multiple domains will be extracted from digital speech and eye movements, and then used as inputs to an AI engine to detect and assess Alzheimer’s’ disease progression. Data will be aggregated in secure cloud storage with clinician access to dashboard visualization tools. Phase I will demonstrate core feasibility. Development will build on a strong tech foundation of an existing LifeBio platform to increase likelihood of success. Currently, LifeBio is deployed in several formats including web, phone, & mobile apps to record life histories of people reaching advanced age or facing life-threatening illnesses or memory loss. Natural language processing tools parse information into life stories shared by family or used by staff to personalize engagement in care facilities. While the existing tech provides a base, significant enhancements will be executed in Phase I. More specifically, Phase I tasks will first update platform architecture to integrate novel data domains, build on smart sequenced multidimensional questions, and enhance patient workflow interfaces. Once the enhanced app passes all technical verification testing, it will be deployed in a field data collection and usability study with wide ranging AD patient demographics and stages. Finally, collected data will be used to build and validate an AI engine for detection and assessment of Alzheimer’s progression.
阿尔茨海默氏病(AD)是在古老人群中发生的最常见痴呆形式之一, 影响全球超过3000万个人。随着美国最古老的人口继续增加,广告增加 同样上升,因为没有神经保护疗法或治愈。常见符号包括记忆丧失,认知 障碍,迷失方向和精神病问题。传统上,诊断是通过结合 临床标准,例如神经检查,心理状态测试和大脑成像。但是,这些策略 对于早期AD或患有轻度症状的患者的挑战,特别是在轻度认知期间 损伤(MCI)阶段。心理状态测试和主题期刊,由患者或看护者保留,可以跟踪广告 进展,但灵敏度和可靠性低。广告中最建立的生物标志物,包括 淀粉样蛋白β,tau蛋白和磷酸化的tau均通过CSF获得,需要侵入性腰椎穿刺。 Lifebio-Alz技术将提供便捷且易于访问但全面的数字生物标志物 和分析套件以检测和评估阿尔茨海默氏症的进展。该平台将集成一套评估 所有域都通过一个以患者为中心的应用程序无缝捕获,该应用程序吸引用户进行自然视频聊天 通过智能数字助手对话。在简短但常规会议中,一个人回答问题 按照智能序列评估意识,参与,认知,反应时间,语音模式,& 情绪状态。该平台将在对话期间录制音频/视频。评估的类型和时机, 以及特定问题将根据广告阶段,个人人口统计和 以前的分析,可以最大程度地减少用户燃烧,同时仍然为算法提供丰富的数据。定量特征 跨多个领域将从数字语音和眼动中提取,然后用作输入 AI引擎可检测和评估阿尔茨海默氏病的疾病进展。数据将在安全云中汇总 临床访问仪表板可视化工具的存储。 第一阶段将展示核心可行性。开发将建立在现有的强大技术基础的基础上 救生员平台增加成功的可能性。目前,Lifebio以多种格式部署,包括Web, 电话和移动应用程序记录了达到高龄或面临生命疾病的人的生活历史 或记忆丧失。自然语言处理工具将信息解析为家庭共享或二手的生活故事 由员工个性化在护理机构中的订婚。虽然现有技术提供了重要的基础 增强功能将在第1阶段执行。更具体地说,第一阶段任务将首先更新平台体系结构 要整合新的数据域,以智能测序的多维问题构建并增强患者 工作流接口。一旦增强的应用程序通过了所有技术验证测试,它将部署在字段中 数据收集和可用性研究,广泛的广告范围患者人口统计和阶段。最后,收集了数据 将用于构建和验证AI引擎,以检测和评估阿尔茨海默氏症的进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lisbeth Sanders其他文献

Lisbeth Sanders的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lisbeth Sanders', 18)}}的其他基金

Development of a reminiscence therapy online platform with machine learning to increase engagement with people living with dementia and their care partners
开发具有机器学习功能的回忆疗法在线平台,以增加与痴呆症患者及其护理伙伴的互动
  • 批准号:
    10079369
  • 财政年份:
    2020
  • 资助金额:
    $ 44.85万
  • 项目类别:
Development of a reminiscence therapy online platform with machine learning to increase engagement with people living with dementia and their care partners
开发具有机器学习功能的回忆疗法在线平台,以增加与痴呆症患者及其护理伙伴的互动
  • 批准号:
    10227234
  • 财政年份:
    2020
  • 资助金额:
    $ 44.85万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 44.85万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 44.85万
  • 项目类别:
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
  • 批准号:
    10713637
  • 财政年份:
    2023
  • 资助金额:
    $ 44.85万
  • 项目类别:
Clinical Decision Support System for Early Detection of Cognitive Decline Using Electronic Health Records and Deep Learning
利用电子健康记录和深度学习早期检测认知衰退的临床决策支持系统
  • 批准号:
    10603902
  • 财政年份:
    2023
  • 资助金额:
    $ 44.85万
  • 项目类别:
The predicative values of vascular and metabolic disorders for risk of incident mild cognitive impairment and dementia
血管和代谢紊乱对发生轻度认知障碍和痴呆风险的预测价值
  • 批准号:
    10661996
  • 财政年份:
    2023
  • 资助金额:
    $ 44.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了