Improving cardiovascular image-based phenotyping using emerging methods in artificial intelligence
使用人工智能新兴方法改善基于心血管图像的表型分析
基本信息
- 批准号:10379426
- 负责人:
- 金额:$ 80.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AbdomenAddressAdultAgeAgingApicalArtificial IntelligenceBiometryBirthCardiacCardiovascular DiseasesCardiovascular systemClinicalClinical ResearchCollectionCommunitiesComplexCongenital AbnormalityDataData ScienceData SetDetectionDiagnosisDiagnosticEarly DiagnosisEarly treatmentEchocardiographyEnvironmentEvaluationFaceFetal HeartGoalsHeartHeart AbnormalitiesHumanImageImage AnalysisInformaticsLabelLeadLesionLifeLiteratureMachine LearningMeasurementMedical ImagingMethodsModelingMorbidity - disease rateOutcomePatientsPatternPattern RecognitionPerformancePhenotypePhysiciansPopulationPregnant WomenProviderPsyche structureQuality ControlRare DiseasesReproducibilityResearchSecureStructureSupervisionSurveysTechniquesTestingTimeTracheaTrainingTranslatingUltrasonographyVariantWorkbasecardiovascular imagingclinical centerclinical decision-makingclinical imagingclinically relevantcomorbiditycomputerized data processingcongenital heart disordercostdata curationdata harmonizationdeep learningdeep learning algorithmdeep learning modeldesigndetection testdiagnostic accuracydisease diagnosisfetalfetal diagnosisheart imagingimage guidedimage processingimaging studyimprovedinsightlearning networkmachine learning algorithmmachine learning methodmodel designmortalitymultidisciplinarymultimodalityneural networkneural network architecturenovelpatient populationprecision medicineprenatalpreventprogramsrepairedscreeningstandard of carestatisticstheoriestoolultrasound
项目摘要
Summary / Abstract
Objective — The goal of this proposal is to develop and optimize novel deep learning (DL) assisted approaches
to improve diagnosis and clinical decision-making for congenital heart disease (CHD). This will be achieved by
using DL, machine learning (ML), and related methods to extract diagnosis, biometric characterizations, and
other information from fetal ultrasound imaging. Notably, this work includes a clinical translational evaluation of
these methods in a population-wide imaging collection spanning two decades, tens of thousands of patients, and
several clinical centers. Background — Despite clear and numerous benefits to prenatal detection of CHD and
an ability for fetal ultrasound to detect over 90% of CHD lesions in theory, in practice the fetal CHD detection
rate is closer to 50%. Prior literature suggests a key cause of this startling diagnosis gap is suboptimal acquisition
and interpretation of fetal heart images. DL is a novel data science technique that is proving excellent at pattern
recognition in images. DL models are a function of the design and tuning of a neural network architecture, and
the curation and processing of the image data used to train the network. Preliminary Studies — We have
assembled a multidisciplinary team of experts in echocardiography and CHD (Drs. Grady, Levine, and Arnaout),
DL and data science (Drs. Keiser, Butte and Arnaout), and statistics and clinical research (Drs. Arnaout and
Grady) and secured access to tens of thousands of multicenter (UCSF and six other centers), multimodal fetal
imaging studies. We have created a scalable image processing pipeline to transform clinical studies into image
data ready for computing. We have designed and trained DL models to find key cardiac views in fetal ultrasound,
calculate standard and advanced fetal cardiac biometrics from those views, and distinguish between normal
hearts and certain CHD lesions. Hypothesis — While DL is powerful, much work is still needed to adapt it for
clinical imaging and to translate it toward clinically relevant performance in patient populations. We hypothesize
that an integrated ensemble DL/ML approach can lead to vast improvements in fetal CHD diagnosis. Aims —
To this end, the main Aims of this proposal are (1) to develop and optimize neural network architectures and
efficient data inputs to relieve key performance bottlenecks for DL in fetal CHD; and (2) to deploy DL models
population-wide to evaluate their ability to improve diagnosis, biometric characterization, and precision
phenotyping over the current standard of care. Our methods include DL/ML algorithms and retrospective imaging
analysis. Environment and Impact — This work will be supported in an outstanding environment for research
at the crossroads of data science, cardiovascular and fetal imaging, and translational informatics. The work
proposed will provide valuable tools and insight into designing and evaluating both the data and the algorithms
for DL on imaging for clinically relevant goals, and will lay important groundwork for DL-assisted phenotyping for
both clinical use and precision medicine research.
摘要 /摘要
目标 - 该提案的目的是开发和优化新颖的深度学习(DL)辅助方法
改善先天性心脏病(CHD)的诊断和临床决策。这将通过
使用DL,机器学习(ML)和相关方法来提取诊断,生物特征特征和
来自胎儿超声成像的其他信息。值得注意的是,这项工作包括对
这些方法在整个人口的成像集中,跨越了二十年,成千上万的患者,以及
几个临床中心。背景 - 尽管明确且在产前检测冠心病和许多好处
从理论上讲,胎儿超声检测超过90%的CHD病变的能力,实际上是胎儿CHD检测
费率接近50%。先前的文献表明,这种起始诊断差距的关键原因是次优获取
和胎儿心脏图像的解释。 DL是一种新颖的数据科学技术,证明在模式下很棒
图像中的识别。 DL模型是神经网络体系结构的设计和调整的函数,
用于训练网络的图像数据的策展和处理。初步研究 - 我们有
组建了一个超声心动图专家和冠心病专家(Grady,Levine和Arnaout博士)的多学科团队,
DL和数据科学(Keizer博士,Butte和Arnaout)以及统计和临床研究(Arnaout和Arnaout博士
Grady)并获得了数以万计的多中心(UCSF和其他六个中心),多模式胎儿的安全访问权限
成像研究。我们创建了可扩展的图像处理管道,以将临床研究转化为图像
准备计算的数据。我们设计和训练了DL模型,以在胎儿超声波中找到关键的心脏视野,
计算标准和晚期胎儿心脏生物识别技术与这些观点,并区分正常
心脏和某些CHD病变。假设 - 尽管DL功能强大,但仍需要做很多工作以适应它
临床成像,并将其转化为患者人群中临床相关的表现。我们假设
集成的集合DL/ML方法可以导致胎儿冠心病诊断的大幅改善。目标 -
为此,该提案的主要目的是(1)开发和优化神经网络体系结构和
有效的数据输入以挽救胎儿冠心病中DL的关键性能瓶颈; (2)部署DL模型
在人群范围内评估他们改善诊断,生物特征表征和精度的能力
在当前护理标准上进行表型。我们的方法包括DL/ML算法和回顾性成像
分析。环境和影响 - 这项工作将在杰出的研究环境中得到支持
在数据科学,心血管和胎儿成像的十字路口,并翻译信息。工作
拟议的将为设计和评估数据和算法提供宝贵的工具和洞察力
用于成像临床相关目标的DL,并将为DL辅助表型奠定重要的基础。
临床使用和精密医学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rima Arnaout其他文献
Rima Arnaout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rima Arnaout', 18)}}的其他基金
Developing FAIR practices for cloud-enabled AI deployment for prospective testing
为基于云的人工智能部署制定公平实践以进行前瞻性测试
- 批准号:
10827803 - 财政年份:2023
- 资助金额:
$ 80.89万 - 项目类别:
ENRICHing NIH Imaging Datasets to Prepare them for Machine Learning
丰富 NIH 成像数据集,为机器学习做好准备
- 批准号:
10842910 - 财政年份:2020
- 资助金额:
$ 80.89万 - 项目类别:
Improving cardiovascular image-based phenotyping using emerging methods in artificial intelligence
使用人工智能新兴方法改善基于心血管图像的表型分析
- 批准号:
10608075 - 财政年份:2020
- 资助金额:
$ 80.89万 - 项目类别:
Genetics and Structure of Trabecular Myocardium in Development and Disease
发育和疾病中小梁心肌的遗传学和结构
- 批准号:
9764455 - 财政年份:2015
- 资助金额:
$ 80.89万 - 项目类别:
Genetics and Structure of Trabecular Myocardium in Development and Disease
发育和疾病中小梁心肌的遗传学和结构
- 批准号:
8967119 - 财政年份:2015
- 资助金额:
$ 80.89万 - 项目类别:
Genetic Analyst of Early Conduction System Development
早期传导系统开发的遗传分析
- 批准号:
8202805 - 财政年份:2011
- 资助金额:
$ 80.89万 - 项目类别:
Genetic Analyst of Early Conduction System Development
早期传导系统开发的遗传分析
- 批准号:
8316460 - 财政年份:2011
- 资助金额:
$ 80.89万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 80.89万 - 项目类别:
Understanding the immune response changes to clinical interventions for Epstein-Barr virus infection prior to lymphoma development in children after organ transplants (UNEARTH)
了解器官移植后儿童淋巴瘤发展之前针对 Epstein-Barr 病毒感染的临床干预的免疫反应变化(UNEARTH)
- 批准号:
10755205 - 财政年份:2023
- 资助金额:
$ 80.89万 - 项目类别:
Modeling genetic contributions to biliary atresia
模拟遗传对胆道闭锁的影响
- 批准号:
10639240 - 财政年份:2023
- 资助金额:
$ 80.89万 - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 80.89万 - 项目类别:
Rapid Free-Breathing 3D High-Resolution MRI for Volumetric Liver Iron Quantification
用于体积肝铁定量的快速自由呼吸 3D 高分辨率 MRI
- 批准号:
10742197 - 财政年份:2023
- 资助金额:
$ 80.89万 - 项目类别: