Mechanisms of Inflammation in Sickle Cell Disease
镰状细胞病的炎症机制
基本信息
- 批准号:10380784
- 负责人:
- 金额:$ 55.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAmidesAnti-Inflammatory AgentsAntioxidantsBindingBiological AvailabilityBlood VesselsCellsCessation of lifeChronicClinicalComplexCongestiveConsumptionDataDiseaseEndothelial CellsEnzymesGene ExpressionGenesGoalsHMGB1 ProteinHemoglobinHemoglobin SSHemolytic AnemiaHomozygoteHypoxiaImpairmentInfiltrationInflammationInflammatoryInjuryKnock-outKnockout MiceLungLung diseasesMediatingMediator of activation proteinMolecularMouse StrainsMusMyeloid CellsNecrosisNervous System TraumaNitric OxideOutcomeOxidantsOxidative StressOxidesOxidoreductasePathway interactionsPatternPermeabilityPeroxidasesPersonsPharmacologic SubstancePharmacologyPhysiologyPredispositionProductionProtein SPulmonary artery structureRelaxationReportingResearchRoleS-NitrosoglutathioneS-NitrosothiolsSKIL geneSickle CellSickle Cell AnemiaSickle HemoglobinStrokeSystemTamoxifenTertiary Protein StructureTestingVascular DiseasesVasodilationbasedesignexperimental studygene productimprovedinhibitorknockout geneliver injurymimeticsmultimodalityneutrophilnovelnovel therapeuticsorgan injuryrecruitsicklingsuicide inhibitorvaso-occlusive crisis
项目摘要
Project Summary/Abstract
Numerous studies show the mechanisms by which sickle cell disease (SCD) induces vasculopathy and
increases vasocongestion are complex and multifactorial. In this revised, renewal application, we hypothesize
that SCD induces vasculopathy as one of the first steps in the mechanism by which SCD increases vaso-
occlusion. Our studies show that SCD induces a destructive cycle that is initiated by MPO and propagated by
high mobility group box-1 (HMGB1), and one other inflammatory component that alters pulmonary physiology,
impairs vascular function, and increases vasocongestion.
Previously, we reported L-acetyl-lysyltyrosylcysteine amide (KYC) inhibits MPO, improves vascular function and
reduces liver injury induced by excessive vasocongestion in SCD mice. New studies suggest that KYC not only
reduces sickle RBC (sRBC) congestion but also increases the number of round sRBC in the lungs of SCD mice.
Mechanistic studies reveal that KYC isn't just an inhibitor of MPO toxic oxidant production, but rather, is a unique
tripeptide substrate that exploits MPO peroxidase activity to be converted into a novel anti-inflammatory agent
that inactivates HMGB1 and activates the cellular pathways that are responsible for antioxidant defense enzyme
expression in the lung. As KYC inhibits multiple inflammatory components in our hypothesized destructive cycle,
and even activates a component that mediates antioxidant gene expression, new studies using mechanistic
inhibitors are required for determine which components increase vasculopathy and vasocongestion in SCD.
While a systems pharmaceutical agent may be useful for treating multifactorial diseases, they cannot be used to
identify causal mechanisms directly. In this revised application, we hypothesize that SCD induces a destructive
cycle, mediated by at least three major components. Our working hypothesis is SCD induces a destructive cycle
that is composed of MPO, HMGB1 and a novel, dysregulate gene and together induce vasculopathy and
increase vasocongestion. By treating sickle mice, sickle MPO knockout (ko) mice, chimeric sickle Tamoxifen-
inducible HMGB1 ko mice and another chimeric sickle ko mice with highly selective mechanistic inhibitors we
will be able to determine if and the extent to which MPO, HMGB1 and the third gene product, alone and/or in
combination induces vasculopathy and increases vasocongestion. To assess vasculopathy, we will quantify
differences in pulmonary artery relaxation, pulmonary permeability, sRBC vasocongestion, and susceptibility of
each mouse strain to sRBC vasocongestion induced by hypoxia-reoxygenation injury (HRI) in Townes
homozygote sickle Hb (SS) wt SS Mpo ko mice, and chimeric SS novel gene ko mice. Our long-term goals are
to confirm the identities of each component and develop novel therapies aimed at improving vascular function
and reducing sRBC vasocongestion.
项目概要/摘要
大量研究表明镰状细胞病 (SCD) 诱发血管病变的机制
血管充血的增加是复杂且多因素的。在这个修订后的续展申请中,我们假设
SCD 诱发血管病变是 SCD 增加血管病变机制的第一步
闭塞。我们的研究表明,SCD 会引发一个由 MPO 引发并通过 MPO 传播的破坏性循环。
高迁移率族盒-1 (HMGB1) 和另一种改变肺部生理学的炎症成分,
损害血管功能,增加血管充血。
此前,我们报道了 L-乙酰基-赖氨酰酪氨酰半胱氨酸酰胺 (KYC) 抑制 MPO、改善血管功能和
减少 SCD 小鼠因过度血管充血引起的肝损伤。新研究表明 KYC 不仅
减少镰状红细胞 (sRBC) 充血,但也增加 SCD 小鼠肺部圆形 sRBC 的数量。
机理研究表明,KYC 不仅是 MPO 有毒氧化剂产生的抑制剂,而且是一种独特的
利用 MPO 过氧化物酶活性转化为新型抗炎剂的三肽底物
使 HMGB1 失活并激活负责抗氧化防御酶的细胞途径
表达于肺。由于 KYC 抑制了我们假设的破坏性循环中的多种炎症成分,
甚至激活介导抗氧化基因表达的成分,使用机制的新研究
需要抑制剂来确定哪些成分会增加 SCD 中的血管病变和血管充血。
虽然系统药剂可用于治疗多因素疾病,但它们不能用于治疗多因素疾病。
直接识别因果机制。在这个修改后的应用中,我们假设 SCD 会引起破坏性的
循环,由至少三个主要成分介导。我们的工作假设是 SCD 会引发破坏性循环
它由 MPO、HMGB1 和一种新的失调基因组成,共同诱发血管病变和
增加血管充血。通过治疗镰状小鼠、镰状 MPO 敲除 (ko) 小鼠、嵌合镰状他莫昔芬-
诱导型 HMGB1 ko 小鼠和另一种具有高度选择性机制抑制剂的嵌合镰状 ko 小鼠
将能够确定 MPO、HMGB1 和第三基因产物是否单独和/或在何种程度上
组合会诱发血管病变并增加血管充血。为了评估血管病变,我们将量化
肺动脉舒张、肺通透性、sRBC 血管充血和敏感性的差异
汤斯缺氧复氧损伤 (HRI) 引起的 sRBC 血管充血的各小鼠品系
纯合子镰状Hb (SS) wt SS Mpo ko 小鼠和嵌合SS 新基因ko 小鼠。我们的长期目标是
确认每个成分的身份并开发旨在改善血管功能的新疗法
并减少 sRBC 血管充血。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kirkwood Arthur Pritchard其他文献
Kirkwood Arthur Pritchard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kirkwood Arthur Pritchard', 18)}}的其他基金
Mechanisms of Inflammation in Sickle Cell Disease
镰状细胞病的炎症机制
- 批准号:
10209615 - 财政年份:2016
- 资助金额:
$ 55.04万 - 项目类别:
Mechanisms of Inflammation in Sickle Cell Disease
镰状细胞病的炎症机制
- 批准号:
10604366 - 财政年份:2016
- 资助金额:
$ 55.04万 - 项目类别:
Novel Peptide MPO Inhibitors for Treating Atherosclerosis
治疗动脉粥样硬化的新型肽 MPO 抑制剂
- 批准号:
8046699 - 财政年份:2011
- 资助金额:
$ 55.04万 - 项目类别:
Novel Peptide MPO Inhibitors for Treating Atherosclerosis
治疗动脉粥样硬化的新型肽 MPO 抑制剂
- 批准号:
8208034 - 财政年份:2011
- 资助金额:
$ 55.04万 - 项目类别:
相似国自然基金
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
- 批准号:42377238
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
两个直线型酰胺类生物碱的结构优化、构效关系及作用机理研究
- 批准号:32372603
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向琥珀酸脱氢酶的新型酰胺类衍生物的设计合成、杀线虫活性及构效关系研究
- 批准号:32360687
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
烟酰胺类生物氢人工光合成过程研究
- 批准号:22309149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型4-取代氨基苯乙酰胺类肠道FXR拮抗剂的发现、结构优化及抗NAFLD活性研究
- 批准号:82360678
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Crosstalk between CES1 and PPAR gamma and LXR alpha in macrophages
巨噬细胞中 CES1 与 PPAR γ 和 LXR α 之间的串扰
- 批准号:
10359914 - 财政年份:2022
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10412114 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10663178 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10032662 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别:
Developing Novel Soluble Epoxide Hydrolase Inhibitors for the Treatment of Alzheimer's Disease
开发用于治疗阿尔茨海默病的新型可溶性环氧化物水解酶抑制剂
- 批准号:
10261446 - 财政年份:2020
- 资助金额:
$ 55.04万 - 项目类别: