Statistical methods for integrative analysis of multiple microbiome datasets
多个微生物组数据集综合分析的统计方法
基本信息
- 批准号:10380772
- 负责人:
- 金额:$ 20.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:16S ribosomal RNA sequencingAddressAdolescentAgeAreaBinomial DistributionBiodiversityBioinformaticsCharacteristicsChild HealthCommunitiesConsensusDNADataData SetDiseaseEvaluationFoundationsFutureGenderHIVHIV InfectionsHealthHeterogeneityHumanIndividualInflammationLaboratoriesLiteratureMeasurementMedical ResearchMethodologyMethodsModelingOutcomePerformancePhenotypePhylogenetic AnalysisPreventionPrevention strategyProceduresProtocols documentationPublic HealthQuality ControlRaceRecommendationReportingReproducibilityResearchRoleSample SizeSamplingSideStatistical MethodsStatistical ModelsStructureTaxonTestingTherapeutic InterventionWorkanalysis pipelinebasebeta diversitycohortdesignexperimental analysisgut dysbiosisgut microbiomehuman microbiotaimprovedinterestmicrobialmicrobiomemicrobiome analysismicrobiome researchmicrobiome sequencingmultilevel analysisnovelprophylacticsimulationstudy populationtooltreatment strategy
项目摘要
Project Abstract:
Recent research has highlighted the importance of human associated microbiota in many diseases and health
conditions. However, in many areas, results are often inconsistent across studies due limited sample sizes,
heterogeneous study populations (e.g., different race, gender, age), and technical variability (e.g., experimen-
tal/analysis pipelines). For example, in HIV studies there is increasing evidence suggesting that gut dysbiosis
contributes to HIV-associated inflammation. However, there is still a lack of consensus on its characteristics,
such as whether HIV infection increases or decreases the microbial biodiversity in the gut and which taxa differ
between HIV+ and HIV-. Integrative analysis, which aggregates information from multiple studies to increase the
sample sizes and boost power, is necessary to move the field forward toward consistent and reproducible dis-
coveries with the potential of suggesting prophylactic and therapeutic intervention. This, however, poses serious
statistical challenges due to the differential biases and measurement error between studies.
The objective of this proposal is to develop and validate statistical methods for integrative analysis of multiple
microbiome datasets that are potentially generated using different laboratory and pre-processing procedures. We
will use the study-specific characteristics, such as study populations, laboratory and pre-processing pipelines,
and develop novel statistical models for characterizing changes in microbial alpha (within-sample) diversity, beta
(between-sample) diversity, and abundances (Aim 1). We will analyze the data from the microbiome quality
control project, a large community effort that sequenced the same set of samples through multiple pipelines,
designed to identify technical variables that impact the microbiome sequencing data, and use this as a basis to
determine how to best use the information in the proposed methods (Aim 2).
We will apply the proposed methods to the HIV microbiome re-analysis project, in which we have compiled all
available 16s rRNA gene sequencing data for gut microbiome in HIV for a comprehensive evaluation. We will
also apply our proposed methods to the microbiome data collected from multiple cohorts from the Environmental
influences of child health outcomes (ECHO) to investigate the role of microbiome in impacting the health of
children and adolescents. We expect that the proposed methods will have broad impact on almost all areas of
microbiome research and provide a foundation for analyzing 16s rRNA sequencing data.
项目摘要:
最近的研究强调了人类相关微生物群在许多疾病和健康中的重要性
但是,在许多领域,由于样本量有限,结果通常是不一致的
异构研究人群(例如不同的种族,性别,年龄)和技术变异性(例如,实验 -
TAL/分析管道),例如,在HIV研究中,有越来越多的证据表明
有助于艾滋病毒相关的炎症。
例如,艾滋病毒是增加还是减少肠道中的微生物生物多样性以及哪个分类单元不同
在HIV+和HIV - 综合分析之间
样本量和增强功率是将领域向前迈向一致且可重复的不良功能所必需的
覆盖物具有暗示预防性和治疗性干预的潜力。
研究之间的统计挑战和研究之间的测量误差引起的。
该提案的目的是开发和验证统计方法以集成多个
潜在使用不同的实验室和处理程序生成的微生物组数据集
将使用特殊特征的特征,例如研究人群,实验室和预处理管道,
并开发新的统计模型,以表征微生物α(样本内)多样性的变化,beta
(样本之间)多样性和丰度(AIM 1)。
控制项目是一项巨大的社区努力。
旨在确定影响微生物组测序数据的技术变量,并用作
确定如何最好地使用支撑方法中的信息(AIM 2)。
我们将将支撑方法应用于Hib微生物组重新分析项目,其中我们已编译所有分析
可用的16S rRNA基因测序数据用于HIV中的肠道微生物组,以进行全面评估
还将我们的支撑方法应用于从环境中从多个队列中收集的微生物组数据
对儿童健康结果的影响(ECHO)调查微生物组在影响健康中的作用
儿童和青少年,我们期望拟议的方法几乎对
微生物组研究并为分析16S rRNA测序数据提供了基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ni Zhao其他文献
Ni Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ni Zhao', 18)}}的其他基金
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
- 批准号:
10708908 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Statistical methods for analyzing messy microbiome data: detection of hidden artifacts and robust modeling approaches
分析杂乱微生物组数据的统计方法:隐藏伪影的检测和稳健的建模方法
- 批准号:
10503637 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Statistical methods for integrative analysis of multiple microbiome datasets
多个微生物组数据集综合分析的统计方法
- 批准号:
10217316 - 财政年份:2021
- 资助金额:
$ 20.31万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Examining Associations between the Oral Microbiota, Neuroinflammation, and Binge Drinking in Adolescents
检查青少年口腔微生物群、神经炎症和酗酒之间的关联
- 批准号:
10679789 - 财政年份:2023
- 资助金额:
$ 20.31万 - 项目类别:
Host DNA methylation as a mechanism of microbiome influence on internalizing behavior
宿主 DNA 甲基化作为微生物组影响内化行为的机制
- 批准号:
10618974 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Host DNA methylation as a mechanism of microbiome influence on internalizing behavior
宿主 DNA 甲基化作为微生物组影响内化行为的机制
- 批准号:
10531997 - 财政年份:2022
- 资助金额:
$ 20.31万 - 项目类别:
Pediatric HIV/AIDS Cohort Study (PHACS) 2020
儿科艾滋病毒/艾滋病队列研究 (PHACS) 2020
- 批准号:
10290224 - 财政年份:2021
- 资助金额:
$ 20.31万 - 项目类别:
Statistical methods for integrative analysis of multiple microbiome datasets
多个微生物组数据集综合分析的统计方法
- 批准号:
10217316 - 财政年份:2021
- 资助金额:
$ 20.31万 - 项目类别: