Mechanisms of DNA Replication, Chromosome Compaction, and Chromosome Unlinking
DNA 复制、染色体压缩和染色体解联机制
基本信息
- 批准号:10373984
- 负责人:
- 金额:$ 102.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisAddressAffectBacteriaBypassCatenanesCell CycleCell divisionCellsChromosomal DuplicationChromosome SegregationChromosome StructuresChromosomesDNADNA DamageDNA PackagingDNA Polymerase IIIDNA Polymerase betaDNA RepairDNA Topoisomerase IVDNA biosynthesisDNA replication forkDNA-Directed RNA PolymeraseDaughterDefectDouble Strand Break RepairEscherichia coliFailureFreezingGenetic MaterialsGenetic TranscriptionGenome StabilityGenomic InstabilityHumanIn VitroLeadLesionMaintenanceMalignant NeoplasmsMediatingMetabolismModelingMolecular ConformationMutationPathway interactionsProteinsRoleSOS ResponseShapesStructureSystemTimeTopoisomeraseTransactcohesincondensindaughter cellgenetic informationgenome integritynext generationpreservationpreventprotein complexrepairedresponsesegregationsingle moleculetransmission process
项目摘要
Summary
Accurate transmission of the genetic information requires complete duplication of the chromosomal DNA each
cell division cycle. The orderly progression of replication forks is challenged by encounters with template
damage, slow moving and arrested RNA polymerases, and frozen DNA-protein complexes that stall the fork.
Stalled forks are foci for genomic instability that causes genetic alterations and can give rise to cancer. Stalled
forks must be remodeled/repaired and replication restarted/continued in order to maintain genomic stability.
We have developed an Escherichia coli DNA replication system that allows us to analyze the
consequences of collision of the replisome with leading-strand template damage and with which we can model
all aspects of replisome stalling in vitro. In this proposal we investigate the integrated network of responses to
DNA damage that the bacterium uses to preserve genomic integrity. We ask: (i) how do stalled forks contribute
to induction of the DNA damage (SOS) response? (ii) What is the mechanism of the UmuDC DNA replication
checkpoint elaborated by the SOS response? (iii) What are the dynamics of exchange between DNA
polymerase IV and DNA polymerase III during replisome-mediated trans-lesion bypass? And (iv), how do
replisomes overcome collisions with RNA polymerases that are themselves stalled by DNA template damage.
We will begin to apply our expertise to address these questions using human replication proteins and are also
expanding our analyses by using single molecule approaches.
Coordinating the structural organization of chromosomes is essential for DNA replication, transcription,
and chromosome segregation during cell division. Failure to achieve proper chromosomal organization during
separation can result in DNA breakage, leading to an uneven distribution of the genetic material to the next
generation. Chromosomal organization involves two principal mechanisms: topological maintenance and
protein-mediated packaging of the DNA. The former prevents entanglement by regulating the topology of the
DNA, resolving unwanted catenanes and knots. The latter shapes the conformation of chromosomes,
increasing the efficiency of any particular macromolecular transaction. Our analyses focus on the interaction
between the cellular condesin, MukB, and the cellular decatenase topoisomerase IV that we discovered and
that we have shown to be required for proper chromosome compaction and segregation. We ask: (i) what is
the role of the MukB accessory proteins MukE and MukF and MukB ATP hydrolysis in chromosome
compaction? (ii) What are the DNA-MukB-Topo IV structures that are formed that lead to chromosome
compaction? (iii) How do defects in chromosome compaction affect DNA metabolic processes such as DNA
repair? And (iv) how does the presumptive bacterial cohesin, RecN, function in double-strand break repair and
daughter-strand gap repair?
概括
遗传信息的准确传递需要染色体DNA的完整复制
细胞分裂周期。复制叉的有序进展受到模板遭遇的挑战
损伤、缓慢移动和停滞的 RNA 聚合酶以及使叉子停滞的冷冻 DNA-蛋白质复合物。
停滞的叉子是基因组不稳定的焦点,会导致基因改变并可能引发癌症。停滞不前
为了维持基因组的稳定性,必须重塑/修复分叉并重新启动/继续复制。
我们开发了大肠杆菌 DNA 复制系统,使我们能够分析
复制体与前导链模板损伤碰撞的后果,我们可以用它来建模
体外复制体停滞的所有方面。在本提案中,我们研究了响应的综合网络
细菌利用 DNA 损伤来保持基因组完整性。我们问:(i)停滞的叉子有何贡献
诱导 DNA 损伤 (SOS) 反应? (ii) UmuDC DNA复制的机制是什么
SOS 响应详细说明的检查点? (iii) DNA 之间的交换动态是怎样的
复制体介导的跨损伤旁路期间的聚合酶 IV 和 DNA 聚合酶 III?以及 (iv),如何做
复制体克服了与 RNA 聚合酶的碰撞,而 RNA 聚合酶本身因 DNA 模板损伤而停滞。
我们将开始运用我们的专业知识,利用人类复制蛋白来解决这些问题,并且
通过使用单分子方法扩展我们的分析。
协调染色体的结构组织对于 DNA 复制、转录、
以及细胞分裂过程中的染色体分离。未能实现适当的染色体组织
分离会导致 DNA 断裂,从而导致遗传物质不均匀地分布到下一个区域。
一代。染色体组织涉及两个主要机制:拓扑维持和
蛋白质介导的 DNA 包装。前者通过调节拓扑结构来防止纠缠
DNA,解决不需要的索链和结。后者塑造染色体的构象,
提高任何特定大分子交易的效率。我们的分析重点是交互
细胞压缩蛋白 MukB 和我们发现的细胞十链酶拓扑异构酶 IV 之间
我们已经证明这是适当的染色体压缩和分离所必需的。我们问:(i)什么是
MukB 辅助蛋白 MukE 和 MukF 以及 MukB ATP 水解在染色体中的作用
压实? (ii) 形成的导致染色体的 DNA-MukB-Topo IV 结构是什么?
压实? (iii)染色体压缩缺陷如何影响DNA等DNA代谢过程
维修? (iv) 假定的细菌粘连蛋白 RecN 在双链断裂修复中如何发挥作用?
子链间隙修复?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH J MARIANS其他文献
KENNETH J MARIANS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH J MARIANS', 18)}}的其他基金
Mechanisms of DNA Replication, Chromosome Compaction, and Chromosome Unlinking
DNA 复制、染色体压缩和染色体解联机制
- 批准号:
10618506 - 财政年份:2018
- 资助金额:
$ 102.86万 - 项目类别:
Mechanisms of DNA Replication, Chromosome Compaction, and Chromosome Unlinking
DNA 复制、染色体压缩和染色体解联机制
- 批准号:
9900025 - 财政年份:2018
- 资助金额:
$ 102.86万 - 项目类别:
Integrated PhD Training Program in Cancer Biology
癌症生物学综合博士培训计划
- 批准号:
7293596 - 财政年份:2006
- 资助金额:
$ 102.86万 - 项目类别:
Integrated PhD Training Program in Cancer Biology
癌症生物学综合博士培训计划
- 批准号:
7492914 - 财政年份:2006
- 资助金额:
$ 102.86万 - 项目类别:
Integrated PhD Training Program in Cancer Biology
癌症生物学综合博士培训计划
- 批准号:
7220759 - 财政年份:2006
- 资助金额:
$ 102.86万 - 项目类别:
Integrated PhD Training Program in Cancer Biology
癌症生物学综合博士培训计划
- 批准号:
7669223 - 财政年份:2006
- 资助金额:
$ 102.86万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Inhibition or evasion of P-glycoprotein-mediated drug transport
抑制或逃避 P-糖蛋白介导的药物转运
- 批准号:
10568723 - 财政年份:2023
- 资助金额:
$ 102.86万 - 项目类别:
Targeting Energetics to Improve Outcomes in Hypertrophic Cardiomyopathy
靶向能量药物以改善肥厚型心肌病的预后
- 批准号:
10687401 - 财政年份:2022
- 资助金额:
$ 102.86万 - 项目类别:
Epigenetic regulatory mechanisms and therapeutic opportunities in endometriosis
子宫内膜异位症的表观遗传调控机制和治疗机会
- 批准号:
10295909 - 财政年份:2021
- 资助金额:
$ 102.86万 - 项目类别:
Role of Ectonucleotidase in Voiding Function and Dysfunction
外切核苷酸酶在排尿功能和功能障碍中的作用
- 批准号:
10292995 - 财政年份:2021
- 资助金额:
$ 102.86万 - 项目类别:
Epigenetic regulatory mechanisms and therapeutic opportunities in endometriosis
子宫内膜异位症的表观遗传调控机制和治疗机会
- 批准号:
10469532 - 财政年份:2021
- 资助金额:
$ 102.86万 - 项目类别: