Molecular understanding of membrane sensors
膜传感器的分子理解
基本信息
- 批准号:10374045
- 负责人:
- 金额:$ 79.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnionsArchitectureBiochemicalBiological ModelsBiologyBiosensorBladderBlood PressureBlood VesselsCell VolumesCell membraneCell physiologyCellsCellular Metabolic ProcessCellular MorphologyCerebral IschemiaCerebral Ischemia-HypoxiaChloridesClassificationClustered Regularly Interspaced Short Palindromic RepeatsComplexCongestive Heart FailureCoupledCryoelectron MicroscopyData SetDetergentsDiseaseEnvironmentErythrocytesFaceFamily memberHearingHomeostasisHomoHomologous GeneHydrophobicityHyponatremiaIntegral Membrane ProteinIon ChannelIon Channel GatingIonic StrengthsIonsKnock-outKnowledgeLigandsLipid BilayersLipidsLungMechanicsMembraneModelingMolecularMolecular ConformationMusMutagenesisMutationOsmolar ConcentrationOsmotic PressureOsmotic ShocksPainPhysiologicalPiezo 1 ion channelPiezo 2 ion channelPliabilityPopulationPreparationPropertyProprioceptionProteinsRegulationResolutionRespiratory physiologyRoleSamplingShapesStimulusStressStrokeStructureStructure-Activity RelationshipSwellingSystemTestingTouch sensationTraumaVesiclebasebody systemdisease-causing mutationdrinking waterenvironmental stressorexperimental studyextracellularinsightmechanical forcemolecular modelingmutantnanodiskpressureresponsesensorstoichiometrysuccess
项目摘要
Project Summary/Abstract
Integral membrane proteins act as critical sensors that respond to intra- and extra-cellular stimuli. These
proteins are involved in many homeostatic cellular functions such as tension/mechanosensation and
osmosensation, and mutations in these sensors can cause pathophysiological states. In this proposal, we will
study the structure and function of the mechanosensitive ion channel, Piezo1, and the osmotic sensing volume-
regulated anion channels (VRACs). Both channels were recently identified in one of the co-PI’s lab and are active
targets for structural studies. Mechanically activated ion channels are thought to be responsible for hearing,
sensing touch/pain, but also sensing arterial blood pressure, and lung and bladder inflation. Piezos are
mechanosensitive ion channels essential for touch, proprioception, vascular biology, red blood cell morphology,
and respiratory physiology. Piezo1 senses mechanical force in lipid bilayers; however, how membrane tension
is sensed by these proteins and transmitted into ion channel gating is not known. Recently, we and others have
solved <4Å resolution structures of Piezo1, however in all structures key portions of Piezo1 were not well
resolved, hindering mechanistic understanding of how mechanosensation and ion channel activity are coupled.
We propose several approaches to build off our initial success and using new structures test hypotheses to
address the remaining structural and mechanistic questions about Piezo1.
The cellular response to osmotic pressures beyond the homeostatic range is critical for survival and yet
significantly contributes to damage caused by cerebral ischemia, stroke, trauma, and hyponatremia . Cell swelling
caused by hypo-osmotic stress activates ion channels including volume-regulated anion channels (VRAC).
VRAC is a diverse set of heteromeric channels of undefined complexity composed of the essential LRRC8A
(“SWELL1”) subunit and any of 4 other LRRC8 family members. Despite recent high-resolution structures of
homo-hexameric LRRC8A from our group and others, the number of subunits, exact composition and
stoichiometry of VRAC are still unknown. Heterologous expression has revealed that important differential
physiological functions of VRAC are dependent on the identity of associating subunits. The primary focus of our
proposed studies is the elucidation of the structure and subunit arrangement of VRACs using high-resolution
cryo-electron microscopy (cryo-EM), and how each of the various assemblies accomplishes different functions.
We believe this proposal targeting these important ion channels will significantly impact our knowledge of
cell volume homeostasis in response to environmental stresses, as well as cell response to membrane tension,
impinging on all vertebrate organ systems since Piezos and VRACs are nearly ubiquitous.
项目概要/摘要
整合膜蛋白充当对细胞内和细胞外刺激做出反应的关键传感器。
蛋白质参与许多稳态细胞功能,例如张力/机械感觉和
渗透感觉和这些传感器的突变会导致病理生理状态。
研究机械敏感离子通道 Piezo1 和渗透传感体积的结构和功能 -
调节阴离子通道 (VRAC) 最近在联合 PI 的实验室之一中被识别出来并且处于活跃状态。
机械激活的离子通道被认为负责听力、
感应触摸/疼痛,还感应动脉血压以及肺和膀胱充气。
机械敏感离子通道对于触觉、本体感觉、血管生物学、红细胞形态、
Piezo1 感知脂质双层中的机械力;然而,膜张力如何?
最近,我们和其他人已经不知道这些蛋白质是否能够感知并传输到离子通道门控中。
解决了Piezo1的<4Å分辨率结构,但是在所有结构中Piezo1的关键部分都不是很好
解决了这一问题,阻碍了对机械感觉和离子通道活动如何耦合的机械理解。
我们采用了几种提案方法来巩固我们最初的成功,并使用新的结构测试假设
解决有关 Piezo1 的剩余结构和机械问题。
细胞对超出稳态范围的渗透压的反应对于生存至关重要,但
显着促进脑缺血、中风、创伤和低钠血症引起的损伤。
低渗透压引起的离子通道激活,包括容量调节阴离子通道 (VRAC)。
VRAC 是一组具有不确定复杂性的多样化异聚通道,由必需的 LRRC8A 组成
(“SWELL1”) 亚基和其他 4 个 LRRC8 家族成员中的任何一个。
来自我们组和其他人的同源六聚体 LRRC8A,亚基的数量,确切的组成和
VRAC 的化学计量仍然未知,异源表达已揭示了重要的差异。
VRAC 的生理功能取决于相关亚基的特性,这是我们的主要关注点。
拟议的研究是使用高分辨率阐明 VRAC 的结构和亚基排列
冷冻电子显微镜 (cryo-EM),以及各个组件如何完成不同的功能。
我们相信这项针对这些重要离子通道的提案将极大地影响我们的知识
响应环境压力的细胞体积稳态,以及细胞对膜张力的反应,
由于压电和 VRAC 几乎无处不在,因此它会影响所有脊椎动物的器官系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ardem Patapoutian其他文献
Ardem Patapoutian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ardem Patapoutian', 18)}}的其他基金
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10504106 - 财政年份:2022
- 资助金额:
$ 79.36万 - 项目类别:
The Role of Sensory Neurons Innervating Internal Organs
感觉神经元支配内脏器官的作用
- 批准号:
10685444 - 财政年份:2022
- 资助金额:
$ 79.36万 - 项目类别:
Mechanisms of force sensing in the nervous system
神经系统中的力传感机制
- 批准号:
10524765 - 财政年份:2017
- 资助金额:
$ 79.36万 - 项目类别:
Mechanisms of force sensing in the nervous system
神经系统中的力传感机制
- 批准号:
10055966 - 财政年份:2017
- 资助金额:
$ 79.36万 - 项目类别:
Mechanisms of force sensing in the nervous system
神经系统中的力传感机制
- 批准号:
10308074 - 财政年份:2017
- 资助金额:
$ 79.36万 - 项目类别:
Mechanisms of force sensing in the nervous system
神经系统中的力传感机制
- 批准号:
10748552 - 财政年份:2017
- 资助金额:
$ 79.36万 - 项目类别:
Role of mechanically activated ion channels in somatosensation
机械激活离子通道在体感中的作用
- 批准号:
8508241 - 财政年份:2012
- 资助金额:
$ 79.36万 - 项目类别:
Role of mechanically activated ion channels in somatosensation
机械激活离子通道在体感中的作用
- 批准号:
9982299 - 财政年份:2012
- 资助金额:
$ 79.36万 - 项目类别:
Structure Function of Mechanically Activated Ion Channel
机械激活离子通道的结构功能
- 批准号:
8681567 - 财政年份:2012
- 资助金额:
$ 79.36万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Structural mechanisms of autoimmune diseases targeting cys-loop receptors
针对半胱氨酸环受体的自身免疫性疾病的结构机制
- 批准号:
10864719 - 财政年份:2023
- 资助金额:
$ 79.36万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10522141 - 财政年份:2022
- 资助金额:
$ 79.36万 - 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:
10652655 - 财政年份:2022
- 资助金额:
$ 79.36万 - 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
- 批准号:
10187218 - 财政年份:2021
- 资助金额:
$ 79.36万 - 项目类别:
Molecular mechanism of Na+ -coupled HCO3- transporters: transport of CO3= and CO2
Na耦合HCO3-转运蛋白的分子机制:CO3=和CO2的转运
- 批准号:
10398247 - 财政年份:2021
- 资助金额:
$ 79.36万 - 项目类别: