Layer-by-Layer Nano Matrix for Growth Plate Regeneration
用于生长板再生的层层纳米基质
基本信息
- 批准号:10373554
- 负责人:
- 金额:$ 17.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-17 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAnimal ModelArchitectureAutologousBehaviorBindingCXCL12 geneCartilageCellsChildChildhoodChondrocytesChondrogenesisClinicClinicalCollagen Type IColorDNADeformityDevelopmentDrug Delivery SystemsEnsureEpiphysial cartilageExcisionFatty acid glycerol estersFractureGoalsGrowthGrowth FactorGrowth and Development functionHealthHistologyHomingHypertrophyIn VitroInjectableInjuryKnowledgeLeadLengthLesionLifeLightLimb structureLocationMature BoneMeasurementMeasuresMediatingMesenchymal Stem CellsMicroscopyMissionMusNanotechnologyNanotubesNatural regenerationNatureOperative Surgical ProceduresOrganismOrthopedicsOsteogenesisOutcomePathway interactionsPatientsPeripheralProteinsPublic HealthPublishingReporterResearchShapesSignal TransductionSiteStructureSurgeonTestingTissue EngineeringTissuesTreatment outcomeUnited States National Institutes of HealthVascular blood supplyWorkbasebonebone marrow mesenchymal stem cellcartilage regenerationcartilaginouschemokinedensitydisabilityeffective therapyhealinghigh rewardhigh riskin vivo regenerationinjuredmatrilin 3minimally invasivenanoosteogenicpreventprogenitorrecruitrepairedscaffoldstem cell differentiationstem cell migrationsuccess
项目摘要
Abstract
Growth plate fracture in children represents a significant problem in clinics. Although only 15-30% of all
childhood fractures are growth plate fractures, because a growth plate determines the length and shape of a
mature bone, this type of fracture may result in severe growth abnormalities in patients. It is known that ~1.4%
of growth plate fractures result in some type of growth arrest, which can be angular deformities caused by
peripheral disturbances or longitudinal shortening when centrally located lesions occur. Growth plate fractures
that extend into the blood supply of the epiphysis enable the transport of bone marrow and mesenchymal stem
cells (MSCs) into the metaphyseal growth plate leading to the formation of a bony bridge and growth arrest.
Therefore, the key challenge to repairing a growth plate injury is how to mediate MSC differentiation spatially at
the injury site and restoring a growth and development that temporally matches the surrounding uninjured
cartilaginous growth plate. Currently, there is no clinically-approved tissue engineering therapy to treat growth
plate fractures. Surgery is the only available treatment, and is only offered after a bony bridge has formed. It
includes removing the bony bridge and inserting autologous fat or cartilage tissue into the empty space to
discourage bony bridge reformation. However, this surgical procedure is very invasive and has an
unsatisfactory success rate.
To overcome these limitations, the objective of this proposal is to develop an injectable nano-matrix to
place cartilage-regenerating factors directly into the fracture, with multiple functional layers to control the timing
of drug delivery. Our central hypothesis is that we can develop a layer-by-layer nano-matrix (LbL-NM) to
achieve spatially and temporally controlled SDF1 and TGF-β1 delivery for growth plate regeneration. The
rationale that underlies the proposal is that once this injectable LbL-NM is developed to spatially and
temporally mediate MSC differentiation in mice, it can be further developed as a minimally invasive and highly
effective tissue engineering approach to treat growth plate fracture in a larger animal model. We will test our
central hypothesis by pursuing two specific aims: 1) Develop an LbL-NM to spatially control the delivery of
TGF-β1 and SDF1 in vitro and evaluate its treatment outcomes for growth plate regeneration in vivo, and 2)
Develop an LbL-NM to control the duration of TGF-β1 supply in the LbL-NM in vitro and evaluate its treatment
outcomes for growth plate regeneration in vivo. With the completion of this study, we expect to realize an LbL-
NM to achieve spatially and temporally controlled TGF-β1 and SDF1 delivery to mediate MSC differentiation in
an injured growth plate. This outcome would have an important positive impact on developing the first tissue
engineering approach to growth plate healing.
抽象的
儿童生长板骨折是临床上的一个重大问题,尽管仅占 15-30%。
儿童期骨折是生长板骨折,因为生长板决定了骨骼的长度和形状
成熟的骨骼,这种类型的骨折可能会导致患者严重的生长异常,已知约1.4%。
生长板骨折会导致某种类型的生长停滞,这可能是由以下原因引起的角畸形:
当位于中心的病变发生时,会出现周边紊乱或纵向缩短。
延伸到骨骺的血液供应,使骨髓和间充质干得以运输
细胞(MSC)进入干骺端生长板,导致骨桥的形成和生长停滞。
因此,修复生长板损伤的关键挑战是如何介导MSC在空间上的分化
损伤部位并恢复与周围未受伤部位暂时相匹配的生长和发育
目前,还没有临床批准的组织工程疗法来治疗生长板。
手术是唯一可用的治疗方法,并且仅在骨桥形成后才进行。
包括移除骨桥并将自体脂肪或软骨组织插入到空的空间中
然而,这种手术具有很强的侵入性并且具有一定的破坏性。
成功率不理想。
为了克服这些限制,本提案的目标是开发一种可注射纳米基质
将软骨再生因子直接放入骨折处,并通过多个功能层来控制时机
我们的中心假设是我们可以开发一种逐层纳米基质(LbL-NM)来
实现空间和时间控制的 SDF1 和 TGF-β1 递送以促进生长板再生。
该提案的基本原理是,一旦这种可注射的 LbL-NM 被开发到空间和
暂时介导小鼠间充质干细胞分化,它可以进一步开发为微创和高度
我们将在更大的动物模型中测试我们的有效组织工程方法来治疗生长板骨折。
通过追求两个具体目标来提出中心假设:1)开发 LbL-NM 来空间控制传递
体外 TGF-β1 和 SDF1 并评估其体内生长板再生的治疗结果,以及 2)
开发 LbL-NM 以在体外控制 LbL-NM 中 TGF-β1 供应的持续时间并评估其治疗效果
随着这项研究的完成,我们期望实现 LbL- 体内生长板再生的结果。
NM 实现空间和时间控制的 TGF-β1 和 SDF1 递送,以介导 MSC 分化
受伤的生长板将对第一个组织的发育产生重要的积极影响。
生长板愈合的工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yupeng Chen其他文献
Yupeng Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yupeng Chen', 18)}}的其他基金
Layer-by-Layer Nano Matrix for Growth Plate Regeneration
用于生长板再生的层层纳米基质
- 批准号:
10649409 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10375219 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10152524 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
10379302 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
Developing Nanomaterial Platform for Intra-Cartilage Delivery of RNA Therapeutics against Joint Diseases
开发用于软骨内递送 RNA 治疗关节疾病的纳米材料平台
- 批准号:
9367787 - 财政年份:2017
- 资助金额:
$ 17.85万 - 项目类别:
Growth Plate Cartilage Repair via Novel Matrilin3/Rosette Nanotube Hybrid Matrix
通过新型 Matrilin3/Rosette 纳米管混合基质修复生长板软骨
- 批准号:
9338126 - 财政年份:2016
- 资助金额:
$ 17.85万 - 项目类别:
Growth Plate Cartilage Repair via Novel Matrilin3/Rosette Nanotube Hybrid Matrix
通过新型 Matrilin3/Rosette 纳米管混合基质修复生长板软骨
- 批准号:
9038551 - 财政年份:2016
- 资助金额:
$ 17.85万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Maglev LVAD with expandable stented inlet and anti-thrombotic coating to improve hemocompatibility
磁悬浮 LVAD 具有可扩张支架入口和抗血栓涂层,可改善血液相容性
- 批准号:
10736998 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
A Connectomic Analysis of a Developing Brain Undergoing Neurogenesis
正在经历神经发生的发育中大脑的连接组学分析
- 批准号:
10719296 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Engineering Surface Coatings for Localized Delivery of Therapeutic Extracellular Vesicles
用于治疗性细胞外囊泡局部递送的工程表面涂层
- 批准号:
10719257 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Biofabricating Seminiferous Tubules for In Vitro Spermatogenesis
用于体外精子发生的生物制造曲细精管
- 批准号:
10800970 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别: