Biofabricating Seminiferous Tubules for In Vitro Spermatogenesis
用于体外精子发生的生物制造曲细精管
基本信息
- 批准号:10800970
- 负责人:
- 金额:$ 41.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcidsAffectAlginatesAnimal TestingArchitectureBindingBiological AssayBlood-Testis BarrierBuffersCell Culture SystemCell Culture TechniquesCell MaintenanceCellsChemicalsCrosslinkerCultured CellsCustomDiagnosisDiameterDiffusionEdetic AcidEndothelial CellsEpitheliumGerm CellsGrowthHomingHormonesHumanHydrogelsIn VitroInfertilityIonsKnock-outKnowledgeMale InfertilityMammalian CellMatrix MetalloproteinasesMethodsModelingMusPatientsPeptidesPhenotypePhysiologyProcessProductionPumpRGD (sequence)ReactionResearchRiskScientistSeminiferous tubule structureShapesSideSpermatogenesisSpermatogoniaSuspension CultureSystemTechnologyTestisTimeTissuesToxic effectTubeTubular formationboyscell growthcrosslinkdivinyl sulfoneimprovedin vivoinfertility treatmentinterstitialinterstitial cellmalemouse modelnew technologyprepubertypreventscaffoldsertoli cellsperm cellstem cells
项目摘要
Project Summary
Failed spermatogenesis is a major cause of male infertility. In vivo, spermatogenesis occurs in seminiferous
tubules. The process is regulated by factors secreted by the interstitial tissue surrounding the tubules. An in
vitro testis cell culture system mimics the seminiferous tubule architecture and models spermatogenesis would
significantly advance fundamental studies and developing methods to prevent, diagnose, and treat infertility. In
past decades, scientists have developed various testis cell culture systems, including 2D culture and 3D cell
suspension culture with or without scaffold support for in vitro spermatogenesis (IVS). However, the cellular
organization of seminiferous tubules has not been successfully established in vitro. Because the architecture is
critical for spermatogenesis, the complete spermatogenesis cycle has not been efficiently achieved in vitro.
This project proposes using advanced micro-extrusion technology to precisely fabricate microtubes with
cellular composition and organization of the in vivo seminiferous tubules and surrounding interstitial tissue. For
convenience, it is termed bio-fabricated seminiferous tubules (BioSTs). The hypothesis is that IVS could be
efficiently achieved by establishing an in-vivo-like microenvironment. The proposed research is based on
advanced cell culture technologies from the PI lab and decades of studies on spermatogenesis from the Co-
PI’s lab. The PI has developed a new technology called AlgTubes for mammalian cell culture. AlgTubes culture
cells in micro-scale alginate hydrogel tubes suspended in a cell culture medium. The microtubes provide cells
with a physiology-relevant microenvironment, thus, significantly improving the culture efficiency such as
viability, growth rate, and yield. AlgTubes have many similarities to the seminiferous tubules, such as their
tubular shape, micro-scale diameter, and mass transport via diffusion through the tube wall. This project will
repurpose and further develop AlgTubes to build BioSTs with three specific aims: to fabricate BioSTs, to
characterize BioSTs including their architecture, blood-testis-barrier, spermatogonia stem cells maintenance,
male hormone production, and in vitro spermatogenesis for three months, and to validate BioSTs by modeling
findings from a previously studied mouse model with Premel1 knockout. BioSTs will be invaluable for
advancing the knowledge of spermatogenesis and male infertility. It also can be an alternative to animal testing
in high-throughput toxicity assays. This will reduce animal testing use and provide more accurate and relevant
results, as the in-vitro sperm will be derived from human cells. Moreover, prepubertal boys undergoing
gonadotoxic treatments are at risk for depleting their spermatogonial stem cells (SSCs). In-vitro-derived
spermatozoa can provide a solution for those boys. Similarly, the technology will benefit the infertility treatment
of non-obstructive azoospermia patients who cannot produce spermatozoa but still have SSCs.
项目概要
精子发生失败是男性不育的主要原因 在体内,精子发生发生在生精器官。
该过程由小管周围的间质组织分泌的因子调节。
体外睾丸细胞培养系统模拟生精小管结构和精子模型无细胞发育
重要的基础研究和开发方法来预防、诊断和治疗不孕症。
几十年来,科学家们开发了各种睾丸细胞培养系统,包括2D培养和3D细胞
然而,有或没有支架悬浮支持的体外精子发生(IVS)的培养。
曲细精管的组织尚未在体外成功建立,因为其结构是。
对于精子发生至关重要,完整的精子发生周期尚未在体外有效实现。
该项目建议使用先进的微挤压技术来精确制造微管
体内曲细精管和周围间质组织的细胞组成和组织。
为了方便起见,它被称为生物制造的生精小管(BioST)。假设 IVS 可能是这样的。
通过建立类似体内的微环境有效地实现了该研究的基础。
PI 实验室的先进细胞培养技术以及 Co- 数十年的精子发生研究
PI 的实验室开发了一种名为 AlgTubes 的哺乳动物细胞培养新技术。
悬浮在细胞培养基中的微型藻酸盐水凝胶管中的细胞 微型管提供细胞。
具有与生理相关的微环境,从而显着提高培养效率,例如
AlgTubes 与生精小管有许多相似之处,例如它们的活力、生长速度和产量。
该项目将研究管状形状、微尺度直径以及通过管壁扩散的质量传输。
重新利用并进一步开发 AlgTubes 来构建 BioST,其具有三个具体目标:制造 BioST、
描述 BioST 的特征,包括其结构、血睾屏障、精原干细胞维持、
三个月的雄性激素产生和体外精子发生,并通过建模验证 BioST
先前研究的 Premel1 基因敲除小鼠模型的研究结果对于我们来说非常有价值。
它也可以作为动物试验的替代方案。
这将减少动物试验的使用并提供更准确和相关的结果。
结果,因为体外精子将来自人类细胞,而且,青春期前的男孩正在经历这种情况。
性腺毒性治疗有耗尽体外衍生的精原干细胞(SSC)的风险。
同样,精子可以为这些男孩提供解决方案,该技术将有利于不孕症的治疗。
不能产生精子但仍具有 SSC 的非梗阻性无精症患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuguo Lei其他文献
Yuguo Lei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuguo Lei', 18)}}的其他基金
An Enabling Technology for Human Cardiomyocyte Manufacturing
人类心肌细胞制造的使能技术
- 批准号:
10444010 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
An Enabling Technology for Human Cardiomyocyte Manufacturing
人类心肌细胞制造的使能技术
- 批准号:
10626105 - 财政年份:2022
- 资助金额:
$ 41.38万 - 项目类别:
A Single Conical Tube Device for Precision CAR-T Cells Manufacturing
用于精密 CAR-T 细胞制造的单锥形管装置
- 批准号:
10115651 - 财政年份:2019
- 资助金额:
$ 41.38万 - 项目类别:
A Single Conical Tube Device for Precision CAR-T Cells Manufacturing
用于精密 CAR-T 细胞制造的单锥形管装置
- 批准号:
9896793 - 财政年份:2019
- 资助金额:
$ 41.38万 - 项目类别:
相似国自然基金
TIGAR的PPP非依赖性抑制线粒体琥珀酸脱氢酶作用对新生期缺氧缺血性神经元铁死亡的影响及机制
- 批准号:82301957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SLC25A47调控胆汁酸合成对肝脏胆固醇稳态的影响与机制研究
- 批准号:82370581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
Aβ-tau对压后皮层神经编码的影响与AD小鼠认知障碍间的关系及多聚唾液酸的干预作用
- 批准号:32300821
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于胞葬作用探讨THBS1/FUNDC2/RAB7蛋白复合体影响鼻咽癌巨噬细胞脂肪酸氧化及存活的机制
- 批准号:82303335
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蓝藻水华对浮游植物到浮游动物碳传递效率的影响:高不饱和脂肪酸的关键作用
- 批准号:32371615
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 41.38万 - 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
- 批准号:
10645919 - 财政年份:2023
- 资助金额:
$ 41.38万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 41.38万 - 项目类别:
Multifunctional Nanoparticle Platform to Prevent Alcohol-Associated HCC Development
多功能纳米颗粒平台可预防酒精相关的 HCC 发展
- 批准号:
10736984 - 财政年份:2023
- 资助金额:
$ 41.38万 - 项目类别:
KRAS G12C: Kinetic and Redox Characterization of Covalent Inhibition
KRAS G12C:共价抑制的动力学和氧化还原表征
- 批准号:
10682167 - 财政年份:2023
- 资助金额:
$ 41.38万 - 项目类别: