Transcription Factor 4 Maintain Endothelial identity to Oppose Heart Failure
转录因子 4 维持内皮特性以对抗心力衰竭
基本信息
- 批准号:10366197
- 负责人:
- 金额:$ 50.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-10 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:Angiotensin IIAttenuatedBioinformaticsBiological AssayCardiacCellsChronicCoculture TechniquesCommunicationComputer ModelsCoronary arteryDataDiastolic blood pressureDown-RegulationEndothelial CellsEndotheliumEnhancersEpigenetic ProcessExhibitsFibroblastsFibrosisFoundationsFunctional disorderGene ExpressionGene SilencingGenesGeneticGenomicsHeartHeart failureImpairmentIn VitroIncidenceInfusion proceduresIntercellular FluidKnowledgeLiteratureLungMaintenanceMediatingMesenchymalModelingMolecularMorbidity - disease rateMyocardialMyofibroblastNatureOutcomePF4 GenePathway interactionsPatientsPerformancePhenotypePlayProteinsReportingRoleSystemT cell factor 4TCF Transcription FactorTestingTherapeuticTimeTissuesTransforming Growth Factor betaVasodilationVentricularWorkautocrinecell typecoronary fibrosisdensityendothelial dysfunctionepithelial to mesenchymal transitiongene discoveryhistone modificationin vivo Modelinsightintercellular communicationinterstitialloss of functionmachine learning modelmortalitynoveloverexpressionparacrinepreventtargeted treatmenttranscription factortransdifferentiation
项目摘要
Project Summary
Heart failure (HF) has a high morbidity and mortality. Its incidence is increasing worldwide. One hallmark of
HF is endothelial cell (EC) dysfunction which initially manifests as impaired endothelium-dependent
vasodilation of the epicardial coronary arteries and the microvasculature. Another important hallmark of HF is
the presence of interstitial fibrosis, which increases myocardial stiffness and cardiac work, elevates diastolic
pressures and increases pulmonary interstitial fluid to impair oxygenation. Genetic lineage tracing showed that
most HF fibroblasts originate from tissue-resident fibroblasts, which expand and differentiate into
myofibroblasts. However, the molecular mechanisms regulating fibroblast activation and myofibroblast
transdifferentiation remain poorly understood. Intercellular communication, especially EC-fibroblast crosstalk,
plays a substantial modulatory role in the normal and failing heart. More specifically, factors secreted by
cardiac microvascular EC modulate cardiac performance and cardiac fibrosis. Thus, targeting endothelial
dysfunction has the potential to be a promising therapeutic avenue for HF.
Recently, we and other groups discovered that genes important for the control of cell identity exhibit a
unique epigenetic signature, e.g., broad enrichment of the activating histone modification H3K4me3 and super-
enhancer marks. These discoveries prompted our pilot work to develop the first computational model for the
discovery of new EC master regulators. This novel model employs an analysis of both the epigenetic
landscape as well as the gene expression network. It successfully recaptured known EC identity genes with
high sensitivity and accuracy. The model further revealed a number of top ranked genes with no reported role
in EC, making them promising candidates as novel EC identity genes. One of the most top-ranked genes is
transcription factor 4 (TCF4), which displays typical features of cell identity gene in EC.
Interestingly, we have preliminary data showing that TCF4 function is a master regulator that maintains EC
identity. Further, TCF4 is downregulated in cardiac ECs of HF patients compared to non-failing controls. The
silencing of TCF4 in EC leads to an increase of EC-secreted proteins TGFβ1, which stimulate fibroblast
activation and myofibroblasts transdifferentiation, and thus promote cardiac fibrosis. In this proposal, we will
investigate the role of TCF4 in EC identity maintenance. We will further investigate the role of TCF4 in the
crosstalk between ECs and fibroblasts, and reveal TCF4 as a therapy target to prevent cardiac fibrosis in HF.
Successful completion of this proposal will be the first to define TCF4 as a novel EC master regulator that
maintains EC phenotype and function. We will uncover an overlooked determinant of HF -- loss of EC identity.
TCF4 dysregulation disturbs EC-fibroblast crosstalk within the heart, aggravating cardiac fibrosis in HF.
Therapeutic modulation of EC-specific TCF4 delivery may be a novel and promising approach for treating HF.
项目摘要
心力衰竭(HF)具有高发病率和死亡率。它的发病率在全球范围内增加。一个标志
HF是内皮细胞(EC)功能障碍,最初表现为受损的内皮依赖性
心外膜冠状动脉和微脉管系统的血管舒张。 HF的另一个重要标志是
增加心肌僵硬和心脏作用的间质纤维化的存在可升高舒张期
压力并增加肺间隙液以损害氧合。遗传谱系追踪表明
大多数HF成纤维细胞源自组织居住的成纤维细胞,它们扩展并分化为
肌纤维细胞。但是,调节成纤维细胞激活和成肌纤维细胞的分子机制
转变的理解仍然很差。细胞间交流,尤其是EC纤维细胞串扰,
在正常和失败的心脏中起着重要的调节作用。更具体地,由
心脏微血管EC调节心脏性能和心脏纤维化。那是针对内皮的
功能障碍有可能成为HF的有前途的治疗途径。
最近,我们和其他群体发现,对于控制细胞身份的基因很重要
独特的表观遗传学特征,例如,激活组蛋白修饰H3K4me3和Super-的广泛富集
增强子标记。这些发现促使我们的飞行员工作开发了第一个计算模型
发现新的EC大师监管机构。这种小说模型对两种表观遗传学进行了分析
景观以及基因表达网络。它成功地捕获了已知的EC认同基因
高灵敏度和准确性。该模型进一步揭示了许多排名最高的基因,没有报告的作用
在EC中,使他们承诺候选人成为新的EC认同基因。排名最高的基因之一是
转录因子4(TCF4),该因子在EC中显示细胞同一性基因的典型特征。
有趣的是,我们有初步数据,表明TCF4功能是维护EC的主调节器
身份。此外,与非输闭对照相比,HF患者心脏ECS的TCF4被下调。这
EC中TCF4的沉默导致EC分泌的蛋白TGFβ1的增加,刺激成纤维细胞
激活和肌纤维细胞转差,从而促进心脏纤维化。在此提案中,我们将
研究TCF4在EC身份维持中的作用。我们将进一步研究TCF4在
EC和成纤维细胞之间的串扰,并揭示TCF4作为预防HF心脏纤维化的治疗靶标。
该提案的成功完成将是第一个将TCF4定义为新型EC主管的人
维护EC表型和功能。我们将揭示一个被忽视的HF - EC身份丧失。
TCF4失调干扰了心脏内部的EC纤维细胞串扰,使HF中的心脏纤维化加剧。
EC特异性TCF4递送的治疗调节可能是治疗HF的新型方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Zhang其他文献
Lili Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Zhang', 18)}}的其他基金
Transcription Factor 4 Maintain Endothelial identity to Oppose Heart Failure
转录因子 4 维持内皮特性以对抗心力衰竭
- 批准号:
10538623 - 财政年份:2021
- 资助金额:
$ 50.17万 - 项目类别:
相似国自然基金
采空区瓦斯爆炸火焰在垮落岩体间的加速与衰减特性研究
- 批准号:52304267
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多分量背景噪声高阶面波频散与衰减的提取和联合反演研究
- 批准号:42304065
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多组学技术解析NK细胞免疫应答在HIV病毒库衰减中的作用和机制研究
- 批准号:82371766
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
锂合金负极微观电化学行为对负极内界面离子输运及容量衰减的作用机理
- 批准号:12304029
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非均质砂岩散射衰减实验测量与微结构散射效应解析
- 批准号:42304144
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Transcription Factor 4 Maintain Endothelial identity to Oppose Heart Failure
转录因子 4 维持内皮特性以对抗心力衰竭
- 批准号:
10538623 - 财政年份:2021
- 资助金额:
$ 50.17万 - 项目类别:
Renal Pericytes as a Target for Angiotensin II Signaling in Hypertension
肾周细胞作为高血压血管紧张素 II 信号传导的靶标
- 批准号:
10431802 - 财政年份:2020
- 资助金额:
$ 50.17万 - 项目类别:
Renal Pericytes as a Target for Angiotensin II Signaling in Hypertension
肾周细胞作为高血压血管紧张素 II 信号传导的靶标
- 批准号:
9975374 - 财政年份:2020
- 资助金额:
$ 50.17万 - 项目类别:
Renal Pericytes as a Target for Angiotensin II Signaling in Hypertension
肾周细胞作为高血压血管紧张素 II 信号传导的靶标
- 批准号:
10654833 - 财政年份:2020
- 资助金额:
$ 50.17万 - 项目类别:
Mechanisms of renin angiotensin modulation in thoracic aortic aneurysms
胸主动脉瘤肾素血管紧张素调节机制
- 批准号:
10242785 - 财政年份:2019
- 资助金额:
$ 50.17万 - 项目类别: