Transcription Factor 4 Maintain Endothelial identity to Oppose Heart Failure
转录因子 4 维持内皮特性以对抗心力衰竭
基本信息
- 批准号:10366197
- 负责人:
- 金额:$ 50.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-10 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:Angiotensin IIAttenuatedBioinformaticsBiological AssayCardiacCellsChronicCoculture TechniquesCommunicationComputer ModelsCoronary arteryDataDiastolic blood pressureDown-RegulationEndothelial CellsEndotheliumEnhancersEpigenetic ProcessExhibitsFibroblastsFibrosisFoundationsFunctional disorderGene ExpressionGene SilencingGenesGeneticGenomicsHeartHeart failureImpairmentIn VitroIncidenceInfusion proceduresIntercellular FluidKnowledgeLiteratureLungMaintenanceMediatingMesenchymalModelingMolecularMorbidity - disease rateMyocardialMyofibroblastNatureOutcomePF4 GenePathway interactionsPatientsPerformancePhenotypePlayProteinsReportingRoleSystemT cell factor 4TCF Transcription FactorTestingTherapeuticTimeTissuesTransforming Growth Factor betaVasodilationVentricularWorkautocrinecell typecoronary fibrosisdensityendothelial dysfunctionepithelial to mesenchymal transitiongene discoveryhistone modificationin vivo Modelinsightintercellular communicationinterstitialloss of functionmachine learning modelmortalitynoveloverexpressionparacrinepreventtargeted treatmenttranscription factortransdifferentiation
项目摘要
Project Summary
Heart failure (HF) has a high morbidity and mortality. Its incidence is increasing worldwide. One hallmark of
HF is endothelial cell (EC) dysfunction which initially manifests as impaired endothelium-dependent
vasodilation of the epicardial coronary arteries and the microvasculature. Another important hallmark of HF is
the presence of interstitial fibrosis, which increases myocardial stiffness and cardiac work, elevates diastolic
pressures and increases pulmonary interstitial fluid to impair oxygenation. Genetic lineage tracing showed that
most HF fibroblasts originate from tissue-resident fibroblasts, which expand and differentiate into
myofibroblasts. However, the molecular mechanisms regulating fibroblast activation and myofibroblast
transdifferentiation remain poorly understood. Intercellular communication, especially EC-fibroblast crosstalk,
plays a substantial modulatory role in the normal and failing heart. More specifically, factors secreted by
cardiac microvascular EC modulate cardiac performance and cardiac fibrosis. Thus, targeting endothelial
dysfunction has the potential to be a promising therapeutic avenue for HF.
Recently, we and other groups discovered that genes important for the control of cell identity exhibit a
unique epigenetic signature, e.g., broad enrichment of the activating histone modification H3K4me3 and super-
enhancer marks. These discoveries prompted our pilot work to develop the first computational model for the
discovery of new EC master regulators. This novel model employs an analysis of both the epigenetic
landscape as well as the gene expression network. It successfully recaptured known EC identity genes with
high sensitivity and accuracy. The model further revealed a number of top ranked genes with no reported role
in EC, making them promising candidates as novel EC identity genes. One of the most top-ranked genes is
transcription factor 4 (TCF4), which displays typical features of cell identity gene in EC.
Interestingly, we have preliminary data showing that TCF4 function is a master regulator that maintains EC
identity. Further, TCF4 is downregulated in cardiac ECs of HF patients compared to non-failing controls. The
silencing of TCF4 in EC leads to an increase of EC-secreted proteins TGFβ1, which stimulate fibroblast
activation and myofibroblasts transdifferentiation, and thus promote cardiac fibrosis. In this proposal, we will
investigate the role of TCF4 in EC identity maintenance. We will further investigate the role of TCF4 in the
crosstalk between ECs and fibroblasts, and reveal TCF4 as a therapy target to prevent cardiac fibrosis in HF.
Successful completion of this proposal will be the first to define TCF4 as a novel EC master regulator that
maintains EC phenotype and function. We will uncover an overlooked determinant of HF -- loss of EC identity.
TCF4 dysregulation disturbs EC-fibroblast crosstalk within the heart, aggravating cardiac fibrosis in HF.
Therapeutic modulation of EC-specific TCF4 delivery may be a novel and promising approach for treating HF.
项目摘要
心力衰竭(HF)具有高的病态,其发病率正在增加
HF是原始细胞(EC)功能障碍,原始表现为依赖邻苯二个的受损
心外膜冠状动脉的血管舒张和Microvasculatore的另一个重要标志。
增加心肌僵硬和心脏作用的间质纤维化的存在可升高舒张期
压力和增加肺间隙液会损害氧气。
大多数HF成纤维细胞源自组织居民进入
但是,肌纤维细胞。
跨不同的跨性别通信,尤其
在正常和面对的心脏中起着重要的调节作用。
心脏微血管ec型心脏性能和心脏纤维化。
功能障碍有可能成为HF的有前途的治疗途径。
最近,我们和其他小组发现,基因对控制细胞的控制很重要
独特的表观遗传学特征,例如,激活组蛋白修饰H3K4me3和Super-的广泛富集
这些发现。
新的EC大师监管机构采用了对表观遗传的分析
景观作为基因表达网络。
高灵敏度和准确性。
在EC中,使他们成为有前途的候选人,成为新的EC认同基因。
转录因子4(TCF4),该因子在EC中显示细胞同一性基因的典型特征。
有趣的是,我们有初步数据,表明TCF4功能是维护EC的主调节器
身份
EC中TCF4的沉默导致EC分泌的蛋白TGFβ1的增加,刺激纤维细胞
激活和肌纤维细胞转差,从而在此提案中促进心脏纤维化。
研究TCF4在EC身份维持中的作用。
ECS和成纤维细胞之间的串扰,并揭示TCF4尽可能高达一定程度至多一点,并且可以到达多达程度,以防止心脏鳍HF。
该提案的成功完成将Wilst定义TCF4为AC Master常规
保持EC表型和功能。
TCF4失调干扰了心脏内部的EC-Fithrops Crosstalk,加剧了HF的心脏纤维化。
EC特异性TCF4递送的治疗调制可能是胎面HF的新颖且推广的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Zhang其他文献
Lili Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Zhang', 18)}}的其他基金
Transcription Factor 4 Maintain Endothelial identity to Oppose Heart Failure
转录因子 4 维持内皮特性以对抗心力衰竭
- 批准号:
10538623 - 财政年份:2021
- 资助金额:
$ 50.17万 - 项目类别:
相似国自然基金
非均质砂岩散射衰减实验测量与微结构散射效应解析
- 批准号:42304144
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于衰减和频散逼近的TI粘弹性波方程有限差分数值求解新方法研究
- 批准号:42304123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
计及动态充电工况寿命衰减的动力电池长短期协同优化充电方法研究
- 批准号:52307248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气压衰减作用下多孔材料的高温氧化衰退机理研究
- 批准号:52371074
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
类“波”衰减条件下球对称爱因斯坦数量场方程相关问题研究
- 批准号:12301072
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Transcription Factor 4 Maintain Endothelial identity to Oppose Heart Failure
转录因子 4 维持内皮特性以对抗心力衰竭
- 批准号:
10538623 - 财政年份:2021
- 资助金额:
$ 50.17万 - 项目类别:
Renal Pericytes as a Target for Angiotensin II Signaling in Hypertension
肾周细胞作为高血压血管紧张素 II 信号传导的靶标
- 批准号:
10431802 - 财政年份:2020
- 资助金额:
$ 50.17万 - 项目类别:
Renal Pericytes as a Target for Angiotensin II Signaling in Hypertension
肾周细胞作为高血压血管紧张素 II 信号传导的靶标
- 批准号:
9975374 - 财政年份:2020
- 资助金额:
$ 50.17万 - 项目类别:
Renal Pericytes as a Target for Angiotensin II Signaling in Hypertension
肾周细胞作为高血压血管紧张素 II 信号传导的靶标
- 批准号:
10654833 - 财政年份:2020
- 资助金额:
$ 50.17万 - 项目类别:
Mechanisms of renin angiotensin modulation in thoracic aortic aneurysms
胸主动脉瘤肾素血管紧张素调节机制
- 批准号:
10242785 - 财政年份:2019
- 资助金额:
$ 50.17万 - 项目类别: