Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling

通过适应性建模将补充学习原则融入失语症康复中

基本信息

项目摘要

Aphasia is a language disorder commonly caused by stroke and other acquired brain injuries that affects over two million people in the US and has a large negative effect on quality of life. Anomia (i.e., word-finding difficulty) is a primary frustration for people with aphasia, and naming treatments for anomia are both widely researched and commonly used in clinical practice. For naming treatments to make a meaningful impact on the lives of people with aphasia, they must produce durable gains in word-finding which generalize beyond the treatment context. However, most theoretically-motivated naming treatment research fails to address the long- term retention of trained words and their generalization to connected speech, limiting their clinical impact. Prevailing learning theory suggests that “desirable difficulty” improves treatment retention and generalization. The current proposal therefore seeks to improve the durability and context generalization of computer-based naming treatment by incorporating model-based algorithms to adaptively maintain desirable difficulty. We will test two distinct models in parallel clinical trials. Our central premise is that these models will facilitate a balance between what have historically been framed as contrasting learning approaches: errorless learning vs. effortful retrieval (Study 1) and massed vs. distributed practice (Study 2). Instead, our models will integrate these approaches by replacing extreme static contrasts with continuous task components which can be adaptively modified based on ongoing patient performance. Study 1 will adaptively balance effort and accuracy using speeded naming deadlines based on a model we have developed which characterizes individuals’ speed-accuracy tradeoffs in picture naming over time. Study 2 will manipulate trial spacing using an adaptive scheduling and memory decay model built into widely available, open-source flashcard software. In both studies, we predict that when compared to matched traditional non-adaptive treatment conditions, our adaptive conditions will produce more successful retention of trained words 3 and 6 months post-treatment on naming probes (Aims 1a, 2a), and better context generalization to connected speech when tested on complex scene descriptions containing untrained exemplars of trained words (Aims 1b, 2b). We also predict that adaptive trial spacing in Study 2 will successfully train many more words than is possible in current standard care. In addition, data generated in Studies 1 and 2 will be used to develop the next generation of adaptive timing models (Aims 1c and 2c), spurring future innovations in personalized medicine. Successful clinical trial outcomes will demonstrate that adaptive computer-based naming treatments provide a novel way to produce large, durable, and generalizable treatment gains, and positive Study 2 findings could be immediately implemented in clinical practice at scale using free open-source software. Successful modeling outcomes will lead to even more effective interventions and lay the groundwork for a transformative research agenda that could ultimately lead to comprehensive adaptive learning systems for aphasia rehabilitation.
失语症是一种通常由中风和其他产生的脑损伤引起的语言障碍 在美国有200万人,对生活质量有很大的负面影响。异构体(即单词调查 困难)是失语症患者的主要沮丧 研究并常用于临床实践。命名治疗对 失语症的生活中的生活,他们必须在单词调查中产生持久的收益,从而超出 治疗环境。但是,大多数神经动机的命名治疗研究都无法解决长期的 培训单词的任期保留及其对连接语音的概括,从而限制了它们的临床影响。 流行的学习理论表明,“理想的困难”改善了治疗的保留率和 概括。因此,当前的建议旨在提高耐用性和上下文的概括 通过增加基于模型的算法来适应理想的算法,以计算机为基础的命名处理 难的。我们将在平行临床试验中测试两个不同的模型。我们的主要前提是这些模型将 促进历史上框架作为对比的学习方法之间的平衡:毫无疑问 学习与努力检索(研究1)和批量与分布式实践(研究2)。相反,我们的模型将 通过替换连续的任务组件替换极端静态对比来整合了这些方法 根据持续的患者表现进行自适应修改。研究1将适应平衡努力和 基于我们开发的模型,使用加速命名截止日期的准确性 随着时间的流逝,个人的速度准确性权衡在图片中命名。研究2将使用 自适应调度和内存衰减模型内置在广泛可用的开源抽认卡软件中。 在这两项研究中,我们都预测,与匹配的传统非自适应治疗相比 条件,我们的适应性条件将使训练有素的单词3和6个月更成功地保留 有关命名问题的治疗后(目标1A,2A),以及更好的上下文概括,以与连接的语音进行更好的概括 在复杂的场景描述上进行了测试,其中包含未经训练的训练词的典范(Aims 1b,2b)。我们也是 预测研究2中的自适应试验间距将成功训练比当前可能更多的单词 标准护理。此外,研究1和2中产生的数据将用于开发下一代 自适应定时模型(AIMS 1C和2C),促进了个性化医学的未来创新。 成功的临床试验结果将证明,基于计算机的命名治疗可提供 产生大型,耐用且可概括的治疗收益的新型方法,而积极的研究2可能是 立即使用免费的开源软件在大规模临床实践中实施。成功的建模 结果将导致更有效的干预措施,并为变革性研究奠定基础 议程最终可能导致全面的自适应学习系统进行失语症康复。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Streicher Evans其他文献

William Streicher Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Streicher Evans', 18)}}的其他基金

Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
  • 批准号:
    10573220
  • 财政年份:
    2022
  • 资助金额:
    $ 62.54万
  • 项目类别:
Adapting acceptance and mindfulness-based behavior therapy for stroke survivors with aphasia to improve communication success, post-stroke adaptation, and quality of life
对患有失语症的中风幸存者采用接受和基于正念的行为疗法,以提高沟通成功率、中风后适应和生活质量
  • 批准号:
    10380602
  • 财政年份:
    2021
  • 资助金额:
    $ 62.54万
  • 项目类别:
Attention and executive control during lexical processing in aphasia
失语症词汇处理过程中的注意力和执行控制
  • 批准号:
    8594650
  • 财政年份:
    2013
  • 资助金额:
    $ 62.54万
  • 项目类别:
Attention and executive control during lexical processing in aphasia
失语症词汇处理过程中的注意力和执行控制
  • 批准号:
    8704107
  • 财政年份:
    2013
  • 资助金额:
    $ 62.54万
  • 项目类别:

相似国自然基金

面向康复护理机器人的人机信任度评估方法与任务影响机制研究
  • 批准号:
    62306195
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
长期护理保险制度与老年照护供给效率及公平:影响机制与政策措施
  • 批准号:
    72274117
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
长期护理保险制度与老年照护供给效率及公平:影响机制与政策措施
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
深海土阻力时变特性影响下管线轴向走管的变形机理及防护理论研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深海土阻力时变特性影响下管线轴向走管的变形机理及防护理论研究
  • 批准号:
    52101325
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Neuromodulation for impulsivity and suicidality in Veterans with mildtraumatic brain injury and common co-occurring mental health conditions
神经调节对患有轻度脑损伤和常见并发心理健康状况的退伍军人的冲动和自杀倾向
  • 批准号:
    10640567
  • 财政年份:
    2023
  • 资助金额:
    $ 62.54万
  • 项目类别:
Using in-vivo Real-time Biosensor to Evaluate Prodrugs Designed to Prolong Therapeutic Effects for Smoking Cessation.
使用体内实时生物传感器评估旨在延长戒烟治疗效果的前药。
  • 批准号:
    10546293
  • 财政年份:
    2023
  • 资助金额:
    $ 62.54万
  • 项目类别:
A Mobile App to Address Co-Occurring Sleep Problems and Heavy Alcohol Use among Veterans Outside of Care Settings
一款解决退伍军人在护理机构之外同时发生的睡眠问题和酗酒问题的移动应用程序
  • 批准号:
    10647530
  • 财政年份:
    2023
  • 资助金额:
    $ 62.54万
  • 项目类别:
Immunogenomic predictors of outcomes in patients with locally advanced cervical cancer treated with immunotherapy and chemoradiation
接受免疫治疗和放化疗的局部晚期宫颈癌患者结果的免疫基因组预测因子
  • 批准号:
    10908093
  • 财政年份:
    2023
  • 资助金额:
    $ 62.54万
  • 项目类别:
Psilocybin and Affective Function in Chronic Lower Back Pain and Depression
裸盖菇素与慢性腰痛和抑郁症的情感功能
  • 批准号:
    10626449
  • 财政年份:
    2023
  • 资助金额:
    $ 62.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了