Detection of prostate Cancer Specific Signals with Hybrid Multi-Dimensional MRI
使用混合多维 MRI 检测前列腺癌特异性信号
基本信息
- 批准号:10365985
- 负责人:
- 金额:$ 52.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-03 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAgreementAreaBenignBenign Prostatic HypertrophyBiopsyCharacteristicsClinicalDataData SetDetectionDiagnosisDiagnosticDiffusionDiffusion Magnetic Resonance ImagingEpithelialEvaluationFinancial costGleason Grade for Prostate CancerGoalsGoldHistologyHybridsImageLaboratoriesLeadMagnetic Resonance ImagingMalignant NeoplasmsMalignant neoplasm of prostateMeasurementMeasuresMethodsModelingNormal tissue morphologyOperative Surgical ProceduresPSA levelPathologistPatient SchedulesPatientsPlayProceduresPropertyProstateProstatectomyPublishingROC CurveResolutionRoleScanningScheduleScreening for Prostate CancerSignal TransductionSpatial DistributionSpecimenStainsTestingTissuesTransrectal UltrasoundWorkaccurate diagnosticsbasecancer diagnosisclinical applicationclinical efficacyclinically significantdiagnostic accuracydigitalimprovedin vivomenmen&aposs groupnovel strategiesprognosticprostate biopsyprostatitisrectalroutine screeningscreeningserum PSAsoft tissue
项目摘要
ABSTRACT
There is a critical need for new alternatives for screening and diagnosis of prostate cancer (PCa). Current
methods for detecting and diagnosing prostate cancer (PCa), including serum PSA level, DRE (digital rectal
exam), and TRUS-guided (transrectal ultrasound) random prostate biopsy are seriously flawed since they are
unreliable and lead to procedures that often do not help and frequently harm patients, at high financial costs.
MRI has potential to improve detection and management of PCa, due to its excellent soft tissue contrast and
functional information. Nevertheless there is, as of yet, no MRI method that is adequate for routine screening or
for guiding biopsies. To be clinically useful –MRI must identify clinically significant cancers (Gleason 7 or
higher) and distinguish them from normal prostate, benign changes, and Gleason 6 ‘cancers’.
In this resubmission, we propose to extend our previous work on hybrid multi-dimensional MRI (HM-MRI),
based on the combination of T2-weighted and diffusion-weighted imaging. This approach is very different from
conventional MRI measurements of T2 and ‘apparent diffusion coefficient’ (ADC). Conventional methods treat
T2 and ADC as independent parameters. In contrast, HM-MRI measures the change in T2 as a function of ‘b’
value, and the change in ADC as a function of ‘TE’. HM-MRI exploits the interdependence of T2 and ADC and
distinct MR properties of prostate tissue components to increase diagnostic accuracy of PCa diagnosis.
We will analyze HM-MRI data to extract volume fractions of the luminal, epithelial, and stromal compartments,
and the ADC and T2 of each compartment in each image voxel. Volume fractions of these tissue
compartments, when measured using quantitative histology, are known to provide high diagnostic accuracy.
This proposal is significantly revised to respond to the previous review. We will test the hypotheses that:
1. HM-MRI data can identify clinically significant PCa, by non-invasively measuring epithelial, stromal, and
luminal volume fractions, to provide information similar to quantitative histology.
2. In addition, HM-MRI provides the T2 and ADC of each compartment, and the volume and spatial distribution
of these compartments. This information may increase diagnostic accuracy, and cannot be easily obtained from
histology.
As a result, HM-MRI combined with compartmental analysis can be used clinically to provide high diagnostic
accuracy, and non-invasive assessment of PCa aggressiveness.
抽象的
目前迫切需要新的替代方案来筛查和诊断前列腺癌 (PCa)。
检测和诊断前列腺癌(PCa)的方法,包括血清 PSA 水平、DRE(直肠指检)
检查)和 TRUS 引导(经直肠超声)随机前列腺活检存在严重缺陷,因为它们
不可靠,导致手术往往对患者没有帮助,而且常常伤害患者,而且经济成本很高。
由于其出色的软组织对比度和
然而,迄今为止,还没有足够的 MRI 方法进行常规筛查或检查。
为了指导活检,MRI 必须识别临床上显着的癌症(Gleason 7 或
更高)并将其与正常前列腺、良性病变和 Gleason 6“癌症”区分开来。
在这次重新提交中,我们建议扩展我们之前在混合多维 MRI(HM-MRI)方面的工作,
这种方法与基于 T2 加权和扩散加权成像的组合有很大不同。
常规 MRI 测量 T2 和“表观弥散系数”(ADC)。
T2 和 ADC 作为独立参数,相比之下,HM-MRI 将 T2 的变化测量为“b”的函数。
值,并且 ADC 作为“TE”函数的变化利用了 T2 和 ADC 的相互依赖性。
前列腺组织成分的独特 MR 特性可提高 PCa 诊断的准确性。
我们将分析 HM-MRI 数据以提取管腔、上皮和基质室的体积分数,
以及每个图像体素中每个隔室的 ADC 和 T2。
众所周知,当使用定量组织学测量时,隔室可以提供高诊断准确性。
为了回应之前的审查,该提案进行了重大修改,我们将测试以下假设:
1. HM-MRI 数据可以通过非侵入性测量上皮、间质和细胞来识别具有临床意义的 PCa。
管腔体积分数,提供类似于定量组织学的信息。
2. 另外,HM-MRI提供各室的T2和ADC,以及体积和空间分布
这些隔室的信息可以提高诊断的准确性,并且不能轻易地从其中获得。
组织学。
因此,HM-MRI 结合房室分析可在临床上提供高诊断率
PCa 侵袭性的准确性和非侵入性评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory S. Karczmar其他文献
Infarction in the Subcallosal Artery and Recurrent Artery of Heubner Following Surgical Repair of the Anterior Communicating Artery Aneurysm: A Causal Relationship with Postoperative Amnesia and Neuropsychological Findings
前交通动脉瘤手术修复后胼胝体下动脉和 Heubner 返动脉梗死:与术后遗忘和神经心理学发现的因果关系
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
森 菜緒子;阿部 裕之;麦倉 俊司;高橋 昭喜; Federico Pineda;Gregory S. Karczmar;高瀬 圭 - 通讯作者:
高瀬 圭
Gregory S. Karczmar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory S. Karczmar', 18)}}的其他基金
Detection of prostate Cancer Specific Signals with Hybrid Multi-Dimensional MRI
使用混合多维 MRI 检测前列腺癌特异性信号
- 批准号:
10600041 - 财政年份:2019
- 资助金额:
$ 52.35万 - 项目类别:
Detection of prostate Cancer Specific Signals with Hybrid Multi-Dimensional MRI
使用混合多维 MRI 检测前列腺癌特异性信号
- 批准号:
9906218 - 财政年份:2019
- 资助金额:
$ 52.35万 - 项目类别:
Breast Cancer Screening with Quantitative Ultra-Fast DCEMRI and Clinical Risk Assessment
使用定量超快速 DCEMRI 进行乳腺癌筛查和临床风险评估
- 批准号:
9370492 - 财政年份:2017
- 资助金额:
$ 52.35万 - 项目类别:
Breast Cancer Screening with Quantitative Ultra-Fast DCEMRI and Clinical Risk Assessment
使用定量超快速 DCEMRI 进行乳腺癌筛查和临床风险评估
- 批准号:
10174859 - 财政年份:2017
- 资助金额:
$ 52.35万 - 项目类别:
3T MRI Scanner for multidisciplinary imaging and image-guided therapy
用于多学科成像和图像引导治疗的 3T MRI 扫描仪
- 批准号:
8733938 - 财政年份:2014
- 资助金额:
$ 52.35万 - 项目类别:
Assessment of Breast Cancer Risk with High Spectral and Spatial Resolution MRI
使用高光谱和空间分辨率 MRI 评估乳腺癌风险
- 批准号:
9221953 - 财政年份:2013
- 资助金额:
$ 52.35万 - 项目类别:
Quantitative DCEMRI of Prostate Cancer Correlation with Gold Standards
前列腺癌的定量 DCEMRI 与金标准的相关性
- 批准号:
8422144 - 财政年份:2013
- 资助金额:
$ 52.35万 - 项目类别:
Assessment of Breast Cancer Risk with High Spectral and Spatial Resolution MRI
使用高光谱和空间分辨率 MRI 评估乳腺癌风险
- 批准号:
8792350 - 财政年份:2013
- 资助金额:
$ 52.35万 - 项目类别:
Quantitative DCEMRI of Prostate Cancer Correlation with Gold Standards
前列腺癌的定量 DCEMRI 与金标准的相关性
- 批准号:
9273482 - 财政年份:2013
- 资助金额:
$ 52.35万 - 项目类别:
Quantitative DCEMRI of Prostate Cancer Correlation with Gold Standards
前列腺癌的定量 DCEMRI 与金标准的相关性
- 批准号:
8881120 - 财政年份:2013
- 资助金额:
$ 52.35万 - 项目类别:
相似国自然基金
基于无源反向散射的跨协议融合与通感增强技术研究
- 批准号:62302383
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于事件逻辑理论的安全协议实施安全性形式化分析与验证
- 批准号:62362033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
融合无线自组网的区块链协议研究
- 批准号:62302266
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理设备与通信信道特征融合的协同内生安全模型及协议
- 批准号:62361010
- 批准年份:2023
- 资助金额:35 万元
- 项目类别:地区科学基金项目
卫星互联网端到端安全传输模型与安全路由协议研究
- 批准号:62302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 52.35万 - 项目类别:
Development and validation of a smart harness to study babies with developmental dysplasia of the hip
开发和验证用于研究患有髋关节发育不良的婴儿的智能安全带
- 批准号:
10557616 - 财政年份:2023
- 资助金额:
$ 52.35万 - 项目类别:
Ameloblast Differentiation and Amelogenesis: Next-Generation Models to Define Key Mechanisms and Factors Involved in Biological Enamel Formation
成釉细胞分化和成釉细胞:定义生物牙釉质形成涉及的关键机制和因素的下一代模型
- 批准号:
10874800 - 财政年份:2023
- 资助金额:
$ 52.35万 - 项目类别:
A comprehensive platform for low-cost screening and image-guided photodynamic therapy (PDT) of pre-malignant and malignant oral lesions in low resource settings
一个综合平台,用于在资源匮乏的环境中对癌前和恶性口腔病变进行低成本筛查和图像引导光动力治疗 (PDT)
- 批准号:
10648426 - 财政年份:2023
- 资助金额:
$ 52.35万 - 项目类别:
Mitral Regurgitation Quantification Using Dual-venc 4D flow MRI and Deep learning
使用 Dual-venc 4D 流 MRI 和深度学习对二尖瓣反流进行量化
- 批准号:
10648495 - 财政年份:2023
- 资助金额:
$ 52.35万 - 项目类别: