Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
基本信息
- 批准号:10359737
- 负责人:
- 金额:$ 30.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:APC geneActinsActomyosinAdaptor Signaling ProteinAdhesionsAdhesivesAntigensBindingBiochemicalBiologicalBiomechanicsCD8B1 geneCell CommunicationCell physiologyCellsCharacteristicsClonal ExpansionCoupledCouplingCuesCytoskeletonCytotoxic T-LymphocytesDevelopmentEnvironmentFamilyFilamentFunctional disorderFutureGelGenerationsGoalsGuanineGuanine Nucleotide Exchange FactorsHumanImmune responseImmune systemImmunologic Deficiency SyndromesImmunotherapyIn VitroInfectionInflammatoryInterleukin-12Interleukin-2InterventionLeadLinkLymphocyte ActivationLymphomaMaintenanceMechanicsMediatingMicrotubulesMolecularMovementMusMutationMyosin ATPaseOpticsPathway interactionsPlayPlus End of the MicrotubuleProcessProteinsReceptor SignalingRegulationRho-associated kinaseRoleSignal PathwaySignal TransductionSiteSmall Interfering RNAStructureSurfaceSystemT-Cell ActivationT-Cell ReceptorT-LymphocyteTechniquesTestingTherapeuticTraction Force MicroscopyTranslatingWorkadaptive immune responsebasecancer cellcell killingcytokinecytotoxic CD8 T cellsgenetic regulatory proteinhuman diseaseimmunological synapsein vivoknock-downmechanical forcemechanical propertiesmechanical stimulusmechanotransductionmutantneoplastic cellnovelnovel strategiesoptogeneticsphysical propertypolymerizationquantitative imagingresponsesensorspatiotemporaltransmission processtumor
项目摘要
Cell-cell interactions, mediated by adhesion and signaling receptors, are highly dynamic and subject to
cytoskeletal movements that impart substantial mechanical force at the interface. How cells combine mechanical
and biochemical signals to carry out specific functions is not well understood. Cells of the immune system present
a compelling context for studying force transmission and mechanosensing because they are structurally dynamic
and are sites of biochemical information transfer. T cell signaling is closely linked to the cytoskeleton, and it is
evident that forces applied by the actin cytoskeleton at the T cell receptor are transduced to biochemical signaling
leading to T cell activation. However, the molecular mechanisms by which these forces are regulated and how
they contribute to T cell function remain obscure. Here, we propose to dissect the interactions and activities of
proteins that reside at the intersection of actin and microtubule (MT) dynamics to advance our understanding of
force generation and mechanosensing in T cells. We hypothesize that dynamic microtubules modulate the T cell
cytoskeleton and proximal signaling both by 1) regulating actin polymerization dynamics in the lamellipodium
and the assembly of structures in the lamella and 2) regulating RhoA activation leading to myosin contractility
and force generation. Ultimately, we hypothesize that MT/actin interactions contribute to the ability of T cells to
adapt their activation and effector function in response to the stiffness of target cells. Our first goal will be to
examine the mechanisms by which MT regulate actin dynamics by probing the specific interactions between MT
and actin via +TIP proteins. We will combine optogenetic techniques with mutations to probe specific interactions
between MT and actin that regulate T cell activation. Our second goal will be to dissect the mechanisms that link
dynamic MTs to myosin driven contractile force generation. We will combine optogenetic control of RhoA
activation and inhibition with quantitative imaging and traction force microscopy to elucidate the spatiotemporal
characteristics of RhoA activation during T cell activation. We will use novel sensors for GEF-H1 activity and
mutations to establish its role in MT/actin coupling, force generation and T cell signaling. Finally, we will perform
studies with mouse cells in a functional context to test the hypothesis that regulation of actomyosin dynamics
and contractility tunes the mechanical coordination of cytotoxic T lymphocyte activation and their efficacy in
killing cancer cells. Our proposed studies will clarify how mechanical stimuli and biochemical signaling are
coupled during the immune response. Furthermore, the specific pathways studied in this proposal are linked to
a number of immunodeficiencies and lymphoma progression and thus will help lead to a better understanding of
how their dysfunction can contribute to human disease, thus providing new targets for intervention in immune
therapy.
通过粘附和信号受体介导的细胞细胞相互作用是高度动态的,受
在界面处赋予大量机械力的细胞骨架运动。细胞如何结合机械
并且尚不清楚执行特定功能的生化信号。存在免疫系统的细胞
用于研究力传输和机械传感的令人信服的环境,因为它们是结构动态的
并且是生化信息转移的地点。 T细胞信号与细胞骨架紧密相关,它是
显然,肌动蛋白细胞骨架在T细胞受体上施加的力被转导为生化信号传导
导致T细胞激活。但是,这些力受调节的分子机制以及如何
它们有助于T细胞功能保持晦涩。在这里,我们建议剖析
驻留在肌动蛋白和微管(MT)动力学相交的蛋白质,以提高我们对
T细胞中的力产生和机械感应。我们假设动态微管调节T细胞
细胞骨架和近端信号传导均通过1)调节lamellipodium中的肌动蛋白聚合动力学
以及片段中的结构组装和2)调节RhoA激活导致肌球蛋白收缩力
和力产生。最终,我们假设MT/肌动蛋白相互作用有助于T细胞的能力
适应其激活和效应子功能,以响应靶细胞的刚度。我们的第一个目标是
检查MT通过探测MT之间的特定相互作用来调节肌动蛋白动力学的机制
和肌动蛋白通过 +尖端蛋白。我们将将光遗传技术与突变结合起来,以探测特定的相互作用
在调节T细胞激活的MT和肌动蛋白之间。我们的第二个目标是剖析链接的机制
动态MTS肌球蛋白驱动的收缩力产生。我们将结合RhoA的光遗传学控制
用定量成像和牵引力显微镜激活和抑制,以阐明时空
T细胞激活过程中RHOA激活的特征。我们将使用新颖的传感器进行GEF-H1活动和
突变以确定其在MT/肌动蛋白偶联,力产生和T细胞信号传导中的作用。最后,我们将表演
在功能上下文中对小鼠细胞的研究,以检验肌动球蛋白动力学调节的假设
收缩性调整了细胞毒性T淋巴细胞激活的机械协调及其在
杀死癌细胞。我们提出的研究将阐明机械刺激和生化信号传导如何
在免疫反应期间结合。此外,该提案中研究的具体途径与
许多免疫缺陷和淋巴瘤进展,因此将有助于更好地理解
它们的功能障碍如何导致人类疾病,从而为免疫干预提供新的靶标
治疗。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation.
- DOI:10.3389/fimmu.2022.779888
- 发表时间:2022
- 期刊:
- 影响因子:7.3
- 作者:Pathni A;Özçelikkale A;Rey-Suarez I;Li L;Davis S;Rogers N;Xiao Z;Upadhyaya A
- 通讯作者:Upadhyaya A
Phase separation in transcription factor dynamics and chromatin organization.
- DOI:10.1016/j.sbi.2021.06.009
- 发表时间:2021-12
- 期刊:
- 影响因子:6.8
- 作者:Wagh K;Garcia DA;Upadhyaya A
- 通讯作者:Upadhyaya A
Nanotopography modulates cytoskeletal organization and dynamics during T cell activation.
- DOI:10.1091/mbc.e21-12-0601
- 发表时间:2022-09-01
- 期刊:
- 影响因子:3.3
- 作者:Wheatley, Brittany A.;Rey-Suarez, Ivan;Hourwitz, Matt J.;Kerr, Sarah;Shroff, Hari;Fourkas, John T.;Upadhyaya, Arpita
- 通讯作者:Upadhyaya, Arpita
Three-dimensional structured illumination microscopy with enhanced axial resolution.
- DOI:10.1038/s41587-022-01651-1
- 发表时间:2023-09
- 期刊:
- 影响因子:46.9
- 作者:Li, Xuesong;Wu, Yicong;Su, Yijun;Rey-Suarez, Ivan;Matthaeus, Claudia;Updegrove, Taylor B. B.;Wei, Zhuang;Zhang, Lixia;Sasaki, Hideki;Li, Yue;Guo, Min;Giannini, John P. P.;Vishwasrao, Harshad D. D.;Chen, Jiji;Lee, Shih-Jong J.;Shao, Lin;Liu, Huafeng;Ramamurthi, Kumaran S. S.;Taraska, Justin W. W.;Upadhyaya, Arpita;La Riviere, Patrick;Shroff, Hari
- 通讯作者:Shroff, Hari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arpita Upadhyaya其他文献
Arpita Upadhyaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arpita Upadhyaya', 18)}}的其他基金
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10693137 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导 - 从免疫反应到转录调节
- 批准号:
10406710 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Supplement request for Cellular mechanotransduction - from the immune response to transcriptional regulation
细胞机械转导的补充请求 - 从免疫反应到转录调控
- 批准号:
10799068 - 财政年份:2022
- 资助金额:
$ 30.78万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
9889158 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Microtubule regulation of actomyosin dynamics and force generation in T lymphocytes
T 淋巴细胞中肌动球蛋白动力学和力产生的微管调节
- 批准号:
10115767 - 财政年份:2019
- 资助金额:
$ 30.78万 - 项目类别:
Nanotopographic modulation of B cell signaling activation
B 细胞信号传导激活的纳米拓扑调节
- 批准号:
9281650 - 财政年份:2016
- 资助金额:
$ 30.78万 - 项目类别:
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Actin gating of crosstalk between Rho GTPases in cell migration
细胞迁移中 Rho GTP 酶之间串扰的肌动蛋白门控
- 批准号:
10736927 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Chemoattractant-specific T cell navigation of complex environments
复杂环境中化学引诱剂特异性 T 细胞导航
- 批准号:
10741224 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
Role of SPECC1L cytoskeletal protein in palate elevation dynamics
SPECC1L 细胞骨架蛋白在上颚抬高动态中的作用
- 批准号:
10638817 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别:
In utero rescue of cleft palate using maternal administration of folic acid
使用叶酸在子宫内挽救腭裂
- 批准号:
10646021 - 财政年份:2023
- 资助金额:
$ 30.78万 - 项目类别: